
Copyright © Oracle Corporation, 2001. All rights reserved.

Creating Views

Introduction to Oracle9i: SQL 11-2

Lesson Aim
In this lesson, you learn to create and use views. You also learn to query the relevant data dictionary object
to retrieve information about views. Finally, you learn to create and use inline views, and perform top-n
analysis using inline views.

11-2 Copyright © Oracle Corporation, 2001. All rights reserved.

Objectives

After completing this lesson, you should be able
to do the following:
• Describe a view
• Create, alter the definition of, and drop a view
• Retrieve data through a view
• Insert, update, and delete data through

a view
• Create and use an inline view
• Perform top-n analysis

Introduction to Oracle9i: SQL 11-3

11-3 Copyright © Oracle Corporation, 2001. All rights reserved.

Database Objects

Description

Basic unit of storage; composed of rows
and columns

Logically represents subsets of data from
one or more tables

Generates primary key values

Improves the performance of some queries

Alternative name for an object

Object

Table

View

Sequence

Index

Synonym

Introduction to Oracle9i: SQL 11-4

What Is a View?
You can present logical subsets or combinations of data by creating views of tables. A view is a logical
table based on a table or another view. A view contains no data of its own but is like a window through
which data from tables can be viewed or changed. The tables on which a view is based are called base
tables. The view is stored as a SELECT statement in the data dictionary.

11-4 Copyright © Oracle Corporation, 2001. All rights reserved.

What Is a View?
EMPLOYEES Table

EMPVU80 View

Introduction to Oracle9i: SQL 11-5

Advantages of Views
• Views restrict access to the data because the view can display selective columns from the table.
• Views can be used to make simple queries to retrieve the results of complicated queries. For

example, views can be used to query information from multiple tables without the user knowing how
to write a join statement.

• Views provide data independence for ad hoc users and application programs. One view can be used
to retrieve data from several tables.

• Views provide groups of users access to data according to their particular criteria.
For more information, see Oracle9i SQL Reference, “CREATE VIEW.”

11-5 Copyright © Oracle Corporation, 2001. All rights reserved.

Why Use Views?

• To restrict data access
• To make complex queries easy
• To provide data independence
• To present different views of the same data

Introduction to Oracle9i: SQL 11-6

Simple Views versus Complex Views
There are two classifications for views: simple and complex. The basic difference is related to the DML
(INSERT, UPDATE, and DELETE) operations.

• A simple view is one that:
– Derives data from only one table
– Contains no functions or groups of data
– Can perform DML operations through the view

• A complex view is one that:
– Derives data from many tables
– Contains functions or groups of data
– Does not always allow DML operations through the view

11-6 Copyright © Oracle Corporation, 2001. All rights reserved.

Simple Views
and Complex Views

Feature Simple Views Complex Views

Number of tables One One or more

Contain functions No Yes

Contain groups of data No Yes
DML operations
through a view Yes Not always

Introduction to Oracle9i: SQL 11-7

Creating a View
You can create a view by embedding a subquery within the CREATE VIEW statement.
In the syntax:

OR REPLACE re-creates the view if it already exists
FORCE creates the view regardless of whether or not the base tables exist
NOFORCE creates the view only if the base tables exist (This is the default.)
view is the name of the view
alias specifies names for the expressions selected by the view’s query (The

number of aliases must match the number of expressions selected by the
view.)

subquery is a complete SELECT statement (You can use aliases for the columns
in the SELECT list.)

WITH CHECK OPTION specifies that only rows accessible to the view can be inserted or
updated

constraint is the name assigned to the CHECK OPTION constraint
WITH READ ONLY ensures that no DML operations can be performed on this view

11-7 Copyright © Oracle Corporation, 2001. All rights reserved.

Creating a View

• You embed a subquery within the CREATE VIEW
statement.

• The subquery can contain complex SELECT
syntax.

CREATE [OR REPLACE] [FORCE|NOFORCE] VIEW view
[(alias[, alias]...)]

AS subquery
[WITH CHECK OPTION [CONSTRAINT constraint]]
[WITH READ ONLY [CONSTRAINT constraint]];

Introduction to Oracle9i: SQL 11-8

11-8 Copyright © Oracle Corporation, 2001. All rights reserved.

Creating a View

• Create a view, EMPVU80, that contains details of
employees in department 80.

• Describe the structure of the view by using the
iSQL*Plus DESCRIBE command.

DESCRIBE empvu80

CREATE VIEW empvu80
AS SELECT employee_id, last_name, salary

FROM employees
WHERE department_id = 80;

View created.

Creating a View (continued)
The example in the slide creates a view that contains the employee number, last name, and salary for each
employee in department 80.
You can display the structure of the view by using the iSQL*Plus DESCRIBE command.

Guidelines for creating a view:
• The subquery that defines a view can contain complex SELECT syntax, including joins, groups, and

subqueries.
• The subquery that defines the view cannot contain an ORDER BY clause. The ORDER BY clause is

specified when you retrieve data from the view.
• If you do not specify a constraint name for a view created with the WITH CHECK OPTION, the

system assigns a default name in the format SYS_Cn.
• You can use the OR REPLACE option to change the definition of the view without dropping and re-

creating it or regranting object privileges previously granted on it.

Introduction to Oracle9i: SQL 11-9

11-9 Copyright © Oracle Corporation, 2001. All rights reserved.

Creating a View

• Create a view by using column aliases in the
subquery.

• Select the columns from this view by the given
alias names.

CREATE VIEW salvu50
AS SELECT employee_id ID_NUMBER, last_name NAME,

salary*12 ANN_SALARY
FROM employees
WHERE department_id = 50;

View created.

Creating a View (continued)
You can control the column names by including column aliases within the subquery.
The example in the slide creates a view containing the employee number (EMPLOYEE_ID) with the alias
ID_NUMBER, name (LAST_NAME) with the alias NAME, and annual salary (SALARY) with the alias
ANN_SALARY for every employee in department 50.
As an alternative, you can use an alias after the CREATE statement and prior to the SELECT subquery. The
number of aliases listed must match the number of expressions selected in the subquery.

CREATE VIEW salvu50 (ID_NUMBER, NAME, ANN_SALARY)
AS SELECT employee_id, last_name, salary*12
FROM employees
WHERE department_id = 50;

View created.

Introduction to Oracle9i: SQL 11-10

11-10 Copyright © Oracle Corporation, 2001. All rights reserved.

Retrieving Data from a View

SELECT *
FROM salvu50;

Retrieving Data from a View
You can retrieve data from a view as you would from any table. You can display either the contents of the
entire view or just specific rows and columns.

Introduction to Oracle9i: SQL 11-11

11-11 Copyright © Oracle Corporation, 2001. All rights reserved.

Querying a View

USER_VIEWS
EMPVU80

SELECT employee_id,
last_name, salary

FROM employees
WHERE department_id=80;

iSQL*Plus

SELECT *
FROM empvu80;

EMPLOYEES

Oracle Server

Views in the Data Dictionary
Once your view has been created, you can query the data dictionary view called USER_VIEWS to see the
name of the view and the view definition. The text of the SELECT statement that constitutes your view is
stored in a LONG column.

Data Access Using Views
When you access data using a view, the Oracle Server performs the following operations:

1. It retrieves the view definition from the data dictionary table USER_VIEWS.
2. It checks access privileges for the view base table.
3. It converts the view query into an equivalent operation on the underlying base table or tables. In

other words, data is retrieved from, or an update is made to, the base tables.

Views in the Data Dictionary

Introduction to Oracle9i: SQL 11-12

Modifying a View
With the OR REPLACE option, a view can be created even if one exists with this name already, thus
replacing the old version of the view for its owner. This means that the view can be altered without
dropping, re-creating, and regranting object privileges.
Note: When assigning column aliases in the CREATE VIEW clause, remember that the aliases are listed in
the same order as the columns in the subquery.

11-12 Copyright © Oracle Corporation, 2001. All rights reserved.

Modifying a View

• Modify the EMPVU80 view by using CREATE OR
REPLACE VIEW clause. Add an alias for each
column name.

• Column aliases in the CREATE VIEW clause are
listed in the same order as the columns in the
subquery.

CREATE OR REPLACE VIEW empvu80
(id_number, name, sal, department_id)

AS SELECT employee_id, first_name || ' ' || last_name,
salary, department_id

FROM employees
WHERE department_id = 80;

View created.

Introduction to Oracle9i: SQL 11-13

11-13 Copyright © Oracle Corporation, 2001. All rights reserved.

Creating a Complex View

Create a complex view that contains group functions
to display values from two tables.

CREATE VIEW dept_sum_vu
(name, minsal, maxsal, avgsal)

AS SELECT d.department_name, MIN(e.salary),
MAX(e.salary),AVG(e.salary)

FROM employees e, departments d
WHERE e.department_id = d.department_id
GROUP BY d.department_name;

View created.

Creating a Complex View
The example in the slide creates a complex view of department names, minimum salaries, maximum
salaries, and average salaries by department. Note that alternative names have been specified for the view.
This is a requirement if any column of the view is derived from a function or an expression.
You can view the structure of the view by using the iSQL*Plus DESCRIBE command. Display the
contents of the view by issuing a SELECT statement.

SELECT *
FROM dept_sum_vu;

Introduction to Oracle9i: SQL 11-14

Performing DML Operations on a View
You can perform DML operations on data through a view if those operations follow certain rules.
You can remove a row from a view unless it contains any of the following:

• Group functions
• A GROUP BY clause
• The DISTINCT keyword
• The pseudocolumn ROWNUM keyword

11-14 Copyright © Oracle Corporation, 2001. All rights reserved.

Rules for Performing
DML Operations on a View

• You can perform DML operations on simple views.
• You cannot remove a row if the view contains the

following:
– Group functions
– A GROUP BY clause
– The DISTINCT keyword
– The pseudocolumn ROWNUM keyword

Introduction to Oracle9i: SQL 11-15

Performing DML Operations on a View (continued)
You can modify data through a view unless it contains any of the conditions mentioned in the previous slide
or columns defined by expressions: for example, SALARY * 12.

11-15 Copyright © Oracle Corporation, 2001. All rights reserved.

Rules for Performing
DML Operations on a View

You cannot modify data in a view if it contains:
– Group functions
– A GROUP BY clause
– The DISTINCT keyword
– The pseudocolumn ROWNUM keyword
– Columns defined by expressions

Introduction to Oracle9i: SQL 11-16

11-16 Copyright © Oracle Corporation, 2001. All rights reserved.

Rules for Performing
DML Operations on a View

You cannot add data through a view if the view
includes:

– Group functions
– A GROUP BY clause
– The DISTINCT keyword
– The pseudocolumn ROWNUM keyword
– Columns defined by expressions
– NOT NULL columns in the base tables that are not

selected by the view

Performing DML Operations on a View (continued)
You can add data through a view unless it contains any of the items listed in the slide or there are NOT
NULL columns, without default values, in the base table that are not selected by the view. All required
values must be present in the view. Remember that you are adding values directly into the underlying table
through the view.
For more information, see 0racle9i SQL Reference, “CREATE VIEW.”

Introduction to Oracle9i: SQL 11-17

11-17 Copyright © Oracle Corporation, 2001. All rights reserved.

Using the WITH CHECK OPTION Clause

• You can ensure that DML operations performed on
the view stay within the domain of the view by
using the WITH CHECK OPTION clause.

• Any attempt to change the department number for
any row in the view fails because it violates the
WITH CHECK OPTION constraint.

CREATE OR REPLACE VIEW empvu20
AS SELECT *

FROM employees
WHERE department_id = 20
WITH CHECK OPTION CONSTRAINT empvu20_ck;

View created.

Using the WITH CHECK OPTION Clause
It is possible to perform referential integrity checks through views. You can also enforce constraints at the
database level. The view can be used to protect data integrity, but the use is very limited.
The WITH CHECK OPTION clause specifies that INSERTs and UPDATEs performed through the view
cannot create rows which the view cannot select, and therefore it allows integrity constraints and data
validation checks to be enforced on data being inserted or updated.
If there is an attempt to perform DML operations on rows that the view has not selected, an error is
displayed, with the constraint name if that has been specified.

UPDATE empvu20
SET department_id = 10
WHERE employee_id = 201;

UPDATE empvu20
*

ERROR at line 1:
ORA-01402: view WITH CHECK OPTION where-clause violation

Note: No rows are updated because if the department number were to change to 10, the view would no
longer be able to see that employee. Therefore, with the WITH CHECK OPTION clause, the view can see
only employees in department 20 and does not allow the department number for those employees to be
changed through the view.

Introduction to Oracle9i: SQL 11-18

11-18 Copyright © Oracle Corporation, 2001. All rights reserved.

Denying DML Operations

• You can ensure that no DML operations occur by
adding the WITH READ ONLY option to your view
definition.

• Any attempt to perform a DML on any row in the
view results in an Oracle server error.

Denying DML Operations
You can ensure that no DML operations occur on your view by creating it with the WITH READ ONLY
option. The example in the slide modifies the EMPVU10 view to prevent any DML operations on the view.

Introduction to Oracle9i: SQL 11-19

Denying DML Operations
Any attempts to remove a row from a view with a read-only constraint results in an error.

DELETE FROM empvu10
WHERE employee_number = 200;

DELETE FROM empvu10
*

ERROR at line 1:
ORA-01752: cannot delete from view without exactly one key-
preserved table

Any attempts to insert a row or modify a row using the view with a read-only constraint results in the
following Oracle Server error:

01733: virtual column not allowed here.

11-19 Copyright © Oracle Corporation, 2001. All rights reserved.

Denying DML Operations

CREATE OR REPLACE VIEW empvu10
(employee_number, employee_name, job_title)

AS SELECT employee_id, last_name, job_id
FROM employees
WHERE department_id = 10
WITH READ ONLY;

View created.

Introduction to Oracle9i: SQL 11-20

Removing a View
You use the DROP VIEW statement to remove a view. The statement removes the view definition from the
database. Dropping views has no effect on the tables on which the view was based. Views or other
applications based on deleted views become invalid. Only the creator or a user with the DROP ANY VIEW
privilege can remove a view.
In the syntax:

view is the name of the view

11-20 Copyright © Oracle Corporation, 2001. All rights reserved.

Removing a View

You can remove a view without losing data because a
view is based on underlying tables in the database.

DROP VIEW empvu80;
View dropped.

DROP VIEW view;

Introduction to Oracle9i: SQL 11-21

Inline Views
An inline view is created by placing a subquery in the FROM clause and giving that subquery an alias. The
subquery defines a data source that can be referenced in the main query. In the following example, the inline
view b returns the details of all department numbers and the maximum salary for each department from the
EMPLOYEES table. The WHERE a.department_id = b.department_id AND a.salary <
b.maxsal clause of the main query displays employee names, salaries, department numbers, and maximum
salaries for all the employees who earn less than the maximum sa lary in their department.

SELECT a.last_name, a.salary, a.department_id, b.maxsal
FROM employees a, (SELECT department_id, max(salary) maxsal

FROM employees
GROUP BY department_id) b

WHERE a.department_id = b.department_id
AND a.salary < b.maxsal;

11-21 Copyright © Oracle Corporation, 2001. All rights reserved.

Inline Views

• An inline view is a subquery with an alias (or
correlation name) that you can use within a SQL
statement.

• A named subquery in the FROM clause of the main
query is an example of an inline view.

• An inline view is not a schema object.

Introduction to Oracle9i: SQL 11-22

Top-n Analysis
Top-n queries are useful in scenarios where the need is to display only the n top-most or the n bottommost
records from a table based on a condition. This result set can be used for further analysis. For example
using top-n analysis you can perform the following types of queries:

• The top three earners in the company
• The four most recent recruits in the company
• The top two sales representatives who have sold the maximum number of products
• The top three products that have had the maximum sales in the last six months

11-22 Copyright © Oracle Corporation, 2001. All rights reserved.

Top-n Analysis

• Top-n queries ask for the n largest or smallest
values of a column. For example:
– What are the ten best selling products?
– What are the ten worst selling products ?

• Both largest values and smallest values sets are
considered top-n queries.

Introduction to Oracle9i: SQL 11-23

Performing Top-n Analysis
Top-n queries use a consistent nested query structure with the elements descr ibed below:

• A subquery or an inline view to generate the sorted list of data. The subquery or the inline view
includes the ORDER BY clause to ensure that the ranking is in the desired order. For results
retrieving the largest values, a DESC parameter is needed.

• An outer query to limit the number of rows in the final result set. The outer query includes the
following components:

– The ROWNUM pseudocolumn, which assigns a sequential value starting with 1 to each of the
rows returned from the subquery.

– A WHERE clause, which specifies the n rows to be returned. The outer WHERE clause must
use a < or <= operator.

11-23 Copyright © Oracle Corporation, 2001. All rights reserved.

Performing Top-n Analysis

The high-level structure of a top-n analysis
query is:

SELECT [column_list], ROWNUM
FROM (SELECT [column_list]

FROM table
ORDER BY Top-N_column)

WHERE ROWNUM <= N;

Introduction to Oracle9i: SQL 11-24

Example of Top-n Analysis
The example in the slide illustrates how to display the names and salaries of the top three earners from the
EMPLOYEES table. The subquery returns the details of all employee names and salaries from the
EMPLOYEES table, sorted in the descending order of the salaries. The WHERE ROWNUM < 3 clause of
the main query ensures that only the first three records from this result set are displayed.
Here is another example of top-n analysis that uses an inline view. The example below uses the inline vie w
E to display the four most senior employees in the company.

SELECT ROWNUM as SENIOR,E.last_name, E.hire_date
FROM (SELECT last_name,hire_date FROM employees

ORDER BY hire_date)E
WHERE rownum <= 4;

11-24 Copyright © Oracle Corporation, 2001. All rights reserved.

Example of Top-n Analysis

To display the top three earner names and salaries
from the EMPLOYEES table.

SELECT ROWNUM as RANK, last_name, salary
FROM (SELECT last_name,salary FROM employees

ORDER BY salary DESC)
WHERE ROWNUM <= 3;

Introduction to Oracle9i: SQL 11-25

11-25 Copyright © Oracle Corporation, 2001. All rights reserved.

Summary

In this lesson you should have learned that a view is
derived from data in other tables or other views and
provides the following advantages:
• Restricts database access
• Simplifies queries
• Provides data independence
• Provides multiple views of the same data
• Can be dropped without removing the underlying

data

What Is a View?
A view is based on a table or another view and acts as a window through which data on tables can be
viewed or changed. A view does not contain data. The definition of the view is stored in the data
dictionary. You can see the definition of the view in the USER_VIEWS data dictionary table.

Advantages of Views
• Restrict database access
• Simplify queries
• Provide data independence
• Provide multiple views of the same data
• Can be removed without affecting the underlying data

View Options
• Can be a simple view, based on one table
• Can be a complex view based on more than one table or can contain groups of functions
• Can replace other views with the same name
• Can contain a check constraint
• Can be read-only

Introduction to Oracle9i: SQL 11-26

11-26 Copyright © Oracle Corporation, 2001. All rights reserved.

Practice 11 Overview

This practice covers the following topics:
• Creating a simple view
• Creating a complex view
• Creating a view with a check constraint
• Attempting to modify data in the view
• Displaying view definitions
• Removing views

Practice 11 Overview
In this practice, you create simple and complex views and attempt to perform DML statements on the
views.

Introduction to Oracle9i: SQL 11-27

Practice 11

1. Create a view called EMPLOYEES_VU based on the employee numbers, employee names, and
department numbers from the EMPLOYEES table. Change the heading for the employee name to
EMPLOYEE.

2. Display the contents of the EMPLOYEES_VU view.

3. Select the view name and text from the USER_VIEWS data dictionary view.
Note: Another view already exists. The EMP_DETAILS_VIEW was created as part of your schema.
Note: To see more contents of a LONG column, use the iSQL*Plus command SET LONG n, where n is
the value of the number of characters of the LONG column that you want to see.

4. Using your EMPLOYEES_VU view, enter a query to display all employee names and department
numbers.

Introduction to Oracle9i: SQL 11-28

Practice 11 (continued)
5. Create a view named DEPT50 that contains the employee numbers, employee last names, and

department numbers for all employees in department 50. Label the view columns
EMPNO, EMPLOYEE, and DEPTNO. Do not allow an employee to be reassigned to another
department through the view.

6. Display the structure and contents of the DEPT50 view.

7. Attempt to reassign Matos to department 80.

If you have time, complete the following exercise:
8. Create a view called SALARY_VU based on the employee last names, department names, salaries,

and salary grades for all employees. Use the EMPLOYEES, DEPARTMENTS, and JOB_GRADES
tables. Label the columns Employee, Department, Salary, and Grade, respectively.

Copyright © Oracle Corporation, 2001. All rights reserved.

Other Database Objects

Copyright © Oracle Corporation, 2001. All rights reserved.

Using SET Operators

Introduction to Oracle9i: SQL 15-2

Lesson Aim
In this lesson, you learn how to write queries by using SET operators.

15-2 Copyright © Oracle Corporation, 2001. All rights reserved.

Objectives

After completing this lesson, you should be able
to do the following:
• Describe SET operators
• Use a SET operator to combine multiple queries into a single

query
• Control the order of rows returned

Introduction to Oracle9i: SQL 15-3

The SET Operators
The SET operators combine the results of two or more component queries into one result. Queries
containing SET operators are called compound queries.

All SET operators have equal precedence. If a SQL statement contains multiple SET operators, the Oracle
server evaluates them from left (top) to right (bottom) if no parentheses explicitly specify another order.
You should use parentheses to specify the order of evaluation explicitly in queries that use the
INTERSECT operator with other SET operators.
Note: In the slide, the light color (grey) in the diagram represents the query result.

Operator Returns
UNION All distinct rows selected by either query
UNION ALL All rows selected by either query, including all duplicates
INTERSECT All distinct rows selected by both queries
MINUS All distinct rows that are selected by the first SELECT statement and that

are not selected in the second SELECT statement

15-3 Copyright © Oracle Corporation, 2001. All rights reserved.

The SET Operators
A B

UNION/UNION ALL

A B

A B

INTERSECT

A B

MINUS

Introduction to Oracle9i: SQL 15-4

15-4 Copyright © Oracle Corporation, 2001. All rights reserved.

Tables Used in This Lesson

The tables used in this lesson are:
• EMPLOYEES: Provides details regarding all

current employees
• JOB_HISTORY: When an employee switches jobs,

the details of the start date and end date of the
former job, the job identification number and
department are recorded in this table

Tables Used in This Lesson
Two tables are used in this lesson. They are the EMPLOYEES table and the JOB_HISTORY table.
The EMPLOYEES table stores the employee details. For the human resource records, this table stores a
unique identification number and email address for each employee. The details of the employee’s job
identification number, salary, and manager are also stored. Some of the employees earn a commission in
addition to their salary; this information is tracked too. The company organizes the roles of employees into
jobs. Some of the employees have been with the company for a long time and have switched to different
jobs. This is monitored using the JOB_HISTORY table. When an employee switches jobs, the details of
the start date and end date of the former job, the job identification number and department are recorded in
the JOB_HISTORY table.
The structure and the data from the EMPLOYEES and the JOB_HISTORY tables are shown on the next
page.
There have been instances in the company of people who have held the same position more than once
during their tenure with the company. For example, consider the employee Taylor, who joined the
company on 24-MAR-1998. Taylor held the job title SA_REP for the period 24-MAR-98 to 31-DEC-98
and the job title SA_MAN for the period 01-JAN-99 to 31-DEC-99. Taylor moved back into the job title of
SA_REP, which is his current job title.
Similarly consider the employee Whalen, who joined the company on 17-SEP-1987. Whalen held the job
title AD_ASST for the period 17-SEP-87 to 17-JUN-93 and the job title AC_ACCOUNT for the period 01-
JUL-94 to 31-DEC-98. Taylor moved back into the job title of AD_ASST, which is his current job title.

Introduction to Oracle9i: SQL 15-5

Tables Used in This Lesson (continued)
DESC employees

SELECT employee_id, last_name, job_id, hire_date, department_id
FROM employees;

Introduction to Oracle9i: SQL 15-6

Tables Used in This Lesson (continued)
DESC job_history

SELECT * FROM job_history;

Introduction to Oracle9i: SQL 15-7

The UNION SET Operator
The UNION operator returns all rows selected by either query. Use the UNION operator to return all rows
from multiple tables and eliminate any duplicate rows.
Guidelines

• The number of columns and the data types of the columns being selected must be identical in all the
SELECT statements used in the query. The names of the columns need not be identical.

• UNION operates over all of the columns being selected.
• NULL values are not ignored during duplicate checking.
• The IN operator has a higher precedence than the UNION operator.
• By default, the output is sorted in ascending order of the first column of the SELECT clause.

15-7 Copyright © Oracle Corporation, 2001. All rights reserved.

The UNION SET Operator

The UNION operator returns results from both queries
after eliminating duplications.

A B

Introduction to Oracle9i: SQL 15-8

Using the UNION SET Operator
The UNION operator eliminates any duplicate records. If there are records that occur both in the
EMPLOYEES and the JOB_HISTORY tables and are identical, the records will be displayed only once.
Observe in the output shown on the slide that the record for the employee with the EMPLOYEE_ID 200
appears twice as the JOB_ID is different in each row.
Consider the following example:
SELECT employee_id, job_id, department_id
FROM employees
UNION
SELECT employee_id, job_id, department_id
FROM job_history;

15-8 Copyright © Oracle Corporation, 2001. All rights reserved.

Using the UNION Operator

Display the current and previous job details of all
employees. Display each employee only once.
SELECT employee_id, job_id
FROM employees
UNION
SELECT employee_id, job_id
FROM job_history;

Introduction to Oracle9i: SQL 15-9

Using the UNION SET Operator (continued)
In the preceding output, employee 200 appears three times. Why? Notice the DEPARTMENT_ID values for
employee 200. One row has a DEPARTMENT_ID of 90, another 10, and the third 90. Because of these
unique combinations of job IDs and department IDs, each row for employee 200 is unique and therefore
not considered a duplicate. Observe that the output is sorted in ascending order of the first column of the
SELECT clause, EMPLOYEE_ID in this case.

Introduction to Oracle9i: SQL 15-10

The UNION ALL Operator
Use the UNION ALL operator to return all rows from multiple queries.
Guidelines

• Unlike UNION, duplicate rows are not eliminated and the output is not sorted by default.
• The DISTINCT keyword cannot be used.

Note: With the exception of the above, the guidelines for UNION and UNION ALL are the same.

15-10 Copyright © Oracle Corporation, 2001. All rights reserved.

The UNION ALL Operator
A B

The UNION ALL operator returns results from both
queries including all duplications.

Introduction to Oracle9i: SQL 15-11

15-11 Copyright © Oracle Corporation, 2001. All rights reserved.

Using the UNION ALL Operator

Display the current and previous departments of
all employees.
SELECT employee_id, job_id, department_id
FROM employees
UNION ALL
SELECT employee_id, job_id, department_id
FROM job_history
ORDER BY employee_id;

The UNION ALL Operator (continued)
In the example, 30 rows are selected. The combination of the two tables totals to 30 rows. The UNION
ALL operator does not eliminate duplicate records. The duplicate records are highlighted in the output
shown in the slide. UNION returns all distinct rows selected by either query. UNION ALL returns all rows
selected by either query, including all duplicates. Consider the query on the slide, now written with the
UNION clause:

SELECT employee_id, job_id,department_id
FROM employees
UNION
SELECT employee_id, job_id,department_id
FROM job_history
ORDER BY employee_id;

The preceding query returns 29 rows. This is because it eliminates the following row (as it is a duplicate):

Introduction to Oracle9i: SQL 15-12

The INTERSECT Operator
Use the INTERSECT operator to return all rows common to multiple queries.
Guidelines

• The number of columns and the data types of the columns being selected by the SELECT statements
in the queries must be identical in all the SELECT statements used in the query. The names of the
columns need not be identical.

• Reversing the order of the intersected tables does not alter the result.
• INTERSECT does not ignore NULL values.

15-12 Copyright © Oracle Corporation, 2001. All rights reserved.

The INTERSECT Operator

A B

The INTERSECT operator returns results that are
common to both queries.

Introduction to Oracle9i: SQL 15-13

15-13 Copyright © Oracle Corporation, 2001. All rights reserved.

Using the INTERSECT Operator

Display the employee IDs and job IDs of employees
who are currently in a job title that they have held
once before during their tenure with the company

SELECT employee_id, job_id
FROM employees
INTERSECT
SELECT employee_id, job_id
FROM job_history;

The INTERSECT Operator (continued)
In the example in this slide, the query returns only the records that have the same values in the selected
columns in both tables.
What will be the results if you add the DEPARTMENT_ID column to the SELECT statement from the
EMPLOYEES table and add the DEPARTMENT_ID column to the SELECT statement from the
JOB_HISTORY table and run this query? The results may be different because of the introduction of
another column whose values may or may not be duplicates.
Example

SELECT employee_id, job_id, department_id
FROM employees
INTERSECT
SELECT employee_id, job_id, department_id
FROM job_history;

Employee 200 is no longer part of the results because the EMPLOYEES.DEPARTMENT_ID value is
different from the JOB_HISTORY.DEPARTMENT_ID value.

Introduction to Oracle9i: SQL 15-14

The MINUS Operator
Use the MINUS operator to return rows returned by the first query that are not present in the second query
(the first SELECT statement MINUS the second SELECT statement).
Guidelines

• The number of columns and the data types of the columns being selected by the SELECT statements
in the queries must be identical in all the SELECT statements used in the query. The names of the
columns need not be identical.

• All of the columns in the WHERE clause must be in the SELECT clause for the MINUS operator to
work.

15-14 Copyright © Oracle Corporation, 2001. All rights reserved.

The MINUS Operator

A B

The MINUS operator returns rows from the first query
that are not present in the second query.

Introduction to Oracle9i: SQL 15-15

The MINUS Operator (continued)
In the example in the slide, the employee IDs in the JOB_HISTORY table are subtracted from those in the
EMPLOYEES table. The results set displays the employees remaining after the subtraction; they are
represented by rows that exist in the EMPLOYEES table but do not exist in the JOB_HISTORY table.
These are the records of the employees who have not changed their jobs even once.

15-15 Copyright © Oracle Corporation, 2001. All rights reserved.

The MINUS Operator

Display the employee IDs of those employees who have
not changed their jobs even once.
SELECT employee_id
FROM employees
MINUS
SELECT employee_id
FROM job_history;

Introduction to Oracle9i: SQL 15-16

15-16 Copyright © Oracle Corporation, 2001. All rights reserved.

SET Operator Guidelines

• The expressions in the SELECT lists must match in
number and data type.

• Parentheses can be used to alter the sequence of
execution.

• The ORDER BY clause:
– Can appear only at the very end of the statement
– Will accept the column name, aliases from the first

SELECT statement, or the positional notation

SET Operator Guidelines
• The expressions in the select lists of the queries must match in number and datatype. Queries that use

UNION, UNION ALL, INTERSECT, and MINUS SET operators in their WHERE clause must have
the same number and type of columns in their SELECT list. For example:

SELECT employee_id, department_id
FROM employees
WHERE (employee_id, department_id)

IN (SELECT employee_id, department_id
FROM employees
UNION
SELECT employee_id, department_id
FROM job_history);

• The ORDER BY clause:
– Can appear only at the very end of the statement
– Will accept the column name, an alias, or the positional notation

• The column name or alias, if used in an ORDER BY clause, must be from the first SELECT list.
• SET operators can be used in subqueries.

Introduction to Oracle9i: SQL 15-17

15-17 Copyright © Oracle Corporation, 2001. All rights reserved.

The Oracle Server and SET Operators

• Duplicate rows are automatically eliminated except
in UNION ALL.

• Column names from the first query appear in the
result.

• The output is sorted in ascending order by default
except in UNION ALL.

The Oracle Server and SET Operators
When a query uses SET operators, the Oracle Server eliminates duplicate rows automatically except in the
case of the UNION ALL operator. The column names in the output are decided by the column list in the
first SELECT statement. By default, the output is sorted in ascending order of the first column of the
SELECT clause.
The corresponding expressions in the select lists of the component queries of a compound query must match
in number and datatype. If component queries select character data, the data type of the return values are
determined as follows:
• If both queries select values of datatype CHAR, the returned values have datatype CHAR.
• If either or both of the queries select values of datatype VARCHAR2, the returned values

have datatype VARCHAR2.

Introduction to Oracle9i: SQL 15-18

15-18 Copyright © Oracle Corporation, 2001. All rights reserved.

Matching the SELECT Statements

Using the UNION operator, display the department ID,
location, and hire date for all employees.

SELECT department_id, TO_NUMBER(null) location, hire_date
FROM employees
UNION
SELECT department_id, location_id, TO_DATE(null)
FROM departments;

Matching the SELECT Statements
As the expressions in the select lists of the queries must match in number , you can use dummy columns
and the data type conversion functions to comply with this rule. In the slide, the name location is given
as the dummy column heading. The TO_NUMBER function is used in the first query to match the NUMBER
data type of the LOCATION_ID column retrieved by the second query. Similarly, the TO_DATE function
in the second query is used to match the DATE datatype of the HIRE_DATE column retrieved by the
second query.

Introduction to Oracle9i: SQL 15-19

Matching the SELECT Statement: Example
The EMPLOYEES and JOB_HISTORY tables have several columns in common; for example,
EMPLOYEE_ID, JOB_ID and DEPARTMENT_ID. But what if you want the query to display the
EMPLOYEE_ID, JOB_ID, and SALARY using the UNION operator, knowing that the salary exists only in
the, EMPLOYEES table?
The code example in the slide matches the EMPLOYEE_ID and the JOB_ID columns in the EMPLOYEES
and in the JOB_HISTORY tables. A literal value of 0 is added to the JOB_HISTORY SELECT statement
to match the numeric SALARY column in the EMPLOYEES SELECT statement.
In the preceding results, each row in the output that corresponds to a record from the JOB_HISTORY table
contains a 0 in the SALARY column.

15-19 Copyright © Oracle Corporation, 2001. All rights reserved.

Matching the SELECT Statement

Using the UNION operator, display the employee ID,
job ID, and salary of all employees.
SELECT employee_id, job_id,salary
FROM employees
UNION
SELECT employee_id, job_id,0
FROM job_history;

Introduction to Oracle9i: SQL 15-20

15-20 Copyright © Oracle Corporation, 2001. All rights reserved.

Controlling the Order of Rows
Produce an English sentence using two
UNION operators.
COLUMN a_dummy NOPRINT
SELECT
FROM dual
UNION
SELECT
FROM dual
UNION
SELECT 'the world to', 2
FROM dual
ORDER BY 2;

'sing' AS "My dream", 3 a_dummy

'I''d like to teach', 1

Controlling the Order of Rows
By default, the output is sorted in ascending order on the first column. You can use the ORDER BY clause
to change this.
Using ORDER BY to Order Rows
The ORDER BY clause can be used only once in a compound query. If used, the ORDER BY clause must
be placed at the end of the query. The ORDER BY clause accepts the column name, an alias, or the
positional notation. Without the ORDER BY clause, the code example in the slide produces the following
output in the alphabetical order of the first column:

Note: Consider a compound query where the UNION SET operator is used more than once. In this case, the
ORDER BY clause can use only positions rather than explicit expressions.

Introduction to Oracle9i: SQL 15-21

15-21 Copyright © Oracle Corporation, 2001. All rights reserved.

Summary

In this lesson, you should have learned the following:
• UNION returns all distinct rows.
• UNION ALL returns all rows, including duplicates.
• INTERSECT returns all rows shared by

both queries.
• MINUS returns all distinct rows selected by the first

query but not by the second.
• ORDER BY can appear only at the very end of

the statement.

Summary
• The UNION operator returns all rows selected by either query. Use the UNION operator to return all

rows from multiple tables and eliminate any duplicate rows.
• Use the UNION ALL operator to return all rows from multiple queries. Unlike with the UNION

operator, duplicate rows are not eliminated and the output is not sorted by default.
• Use the INTERSECT operator to return all rows common to multiple queries.
• Use the MINUS operator to return rows returned by the first query that are not present in the second

query.
• Remember to use the ORDER BY clause only at the very end of the compound statement.
• Make sure that the corresponding expressions in the SELECT lists match in number and data type.

Introduction to Oracle9i: SQL 15-22

15-22 Copyright © Oracle Corporation, 2001. All rights reserved.

Practice 15 Overview

This practice covers the following topics:
• Writing queries using the SET operators
• Discovering alternative join methods

Practice 15 Overview
In this practice, you write queries using the SET operators.

Introduction to Oracle9i: SQL 15-23

Practice 15
1. List the department IDs for departments that do not contain the job ID ST_CLERK,

using SET operators.

2. Display the country ID and the name of the countries that have no departments located in
them, using SET operators.

3. Produce a list of jobs for departments 10, 50, and 20, in that order. Display job ID and
department ID, using SET operators.

4. List the employee IDs and job IDs of those employees who are currently in the job title that
they have held once before during their tenure with the company.

Introduction to Oracle9i: SQL 15-24

Practice 15 (Continued)

5. Write a compound query that lists the following:
• Last names and department ID of all the employees from the EMPLOYEES table, irrespective

of the fact whether they belong to any department or not
• Department ID and department name of all the departments from the DEPARTMENTS table,

irrespective of the fact whether they have employees working in them or not.

Copyright © Oracle Corporation, 2001. All rights reserved.

Controlling User Access

Introduction to Oracle9i: SQL 13-2

Lesson Aim
In this lesson, you learn how to control database access to specific objects and add new users with different
levels of access privileges.

13-2 Copyright © Oracle Corporation, 2001. All rights reserved.

Objectives

After completing this lesson, you should be able to
do the following:
• Create users
• Create roles to ease setup and maintenance of the

security model
• Use the GRANT and REVOKE statements to grant

and revoke object privileges
• Create and access database links

Introduction to Oracle9i: SQL 13-3

Controlling User Access
In a multiple-user environment, you want to maintain security of the database access and use. With Oracle
server database security, you can do the following:

• Control database access
• Give access to specific objects in the database
• Confirm given and received privileges with the Oracle data dictionary
• Create synonyms for database objects

Database security can be classified into two categories: system security and data security. System security
covers access and use of the database at the system level, such as the username and password, the disk
space allocated to users, and the system operations that users can perform. Database security covers access
and use of the database objects and the actions that those users can have on the objects.

13-3 Copyright © Oracle Corporation, 2001. All rights reserved.

Controlling User Access

Database
Administrator

Users

Username and Password
Privileges

Introduction to Oracle9i: SQL 13-4

Privileges
Privileges are the right to execute particular SQL statements. The database administrator (DBA) is a high-
level user with the ability to grant users access to the database and its objects. The users require system
privileges to gain access to the database and object privileges to manipulate the content of the objects in the
database. Users can also be given the privilege to grant additional privileges to other users or to roles,
which are named groups of related privileges.

Schemas
A schema is a collection of objects, such as tables, views, and sequences. The schema is owned by a
database user and has the same name as that user.
For more information, see Oracle9i Application Developer’s Guide - Fundamentals, “Establishing a
Security Policy,” and Oracle9i Concepts, “Database Security.”

13-4 Copyright © Oracle Corporation, 2001. All rights reserved.

Privileges

• Database security:
– System security
– Data security

• System privileges: Gaining access to the database
• Object privileges: Manipulating the content of the

database objects
• Schemas: Collections of objects, such as tables,

views, and sequences

Introduction to Oracle9i: SQL 13-5

13-5 Copyright © Oracle Corporation, 2001. All rights reserved.

System Privileges

• More than 100 privileges are available.
• The database administrator has high-level system

privileges for tasks such as:
– Creating new users
– Removing users
– Removing tables
– Backing up tables

System Privileges
More than 100 distinct system privileges are available for users and roles. System privileges typically are
provided by the database administrator.
Typical DBA Privileges

System Privilege Operations Authorized
CREATE USER Grantee can create other Oracle users (a privilege required

for a DBA role).
DROP USER Grantee can drop another user.
DROP ANY TABLE Grantee can drop a table in any schema.
BACKUP ANY TABLE Grantee can back up any table in any schema with the

export utility.
SELECT ANY TABLE Grantee can query tables, views, or snapshots in any

schema.
CREATE ANY TABLE Grantee can create tables in any schema.

Introduction to Oracle9i: SQL 13-6

13-6 Copyright © Oracle Corporation, 2001. All rights reserved.

Creating Users

The DBA creates users by using the CREATE USER
statement.

CREATE USER scott
IDENTIFIED BY tiger;
User created.

CREATE USER user
IDENTIFIED BY password;

Creating a User
The DBA creates the user by executing the CREATE USER statement. The user does not have any
privileges at this point. The DBA can then grant privileges to that user. These privileges determine what the
user can do at the database level.
The slide gives the abridged syntax for creating a user.
In the syntax:

user is the name of the user to be created

password specifies that the user must log in with this password
For more information, see Oracle9i SQL Reference, “GRANT” and “CREATE USER .”

Introduction to Oracle9i: SQL 13-7

13-7 Copyright © Oracle Corporation, 2001. All rights reserved.

User System Privileges

• Once a user is created, the DBA can grant specific
system privileges to a user.

• An application developer, for example, may have
the following system privileges:
– CREATE SESSION

– CREATE TABLE

– CREATE SEQUENCE

– CREATE VIEW

– CREATE PROCEDURE

GRANT privilege [, privilege...]
TO user [, user| role, PUBLIC...];

Typical User Privileges
Now that the DBA has created a user, the DBA can assign privileges to that user.

In the syntax:
privilege is the system privilege to be granted
user |role|PUBLIC is the name of the user, the name of the role, or PUBLIC designates

that every user is granted the privilege
Note: Current system privileges can be found in the dictionary view SESSION_PRIVS .

System Privilege Operations Authorized
CREATE SESSION Connect to the database
CREATE TABLE Create tables in the user’s schema
CREATE SEQUENCE Create a sequence in the user’s schema
CREATE VIEW Create a view in the user’s schema
CREATE PROCEDURE Create a stored procedure, function, or package in the user’s

schema

Introduction to Oracle9i: SQL 13-8

Granting System Privileges

The DBA uses the GRANT statement to allocate system privileges to the user. Once the user has been
granted the privileges, the user can immediately use those privileges.
In the example in the slide, user Scott has been assigned the privileges to create sessions, tables, sequences,
and views.

13-8 Copyright © Oracle Corporation, 2001. All rights reserved.

Granting System Privileges

The DBA can grant a user specific system privileges.

GRANT create session, create table,
create sequence, create view

TO scott;
Grant succeeded.

Introduction to Oracle9i: SQL 13-9

13-9 Copyright © Oracle Corporation, 2001. All rights reserved.

What Is a Role?

Allocating privileges
without a role

Allocating privileges
with a role

Privileges

Users

Manager

What Is a Role?
A role is a named group of related privileges that can be granted to the user. This method makes it easier to
revoke and maintain privileges.
A user can have access to several roles, and several users can be assigned the same role. Roles are typically
created for a database application.

Creating and Assigning a Role
First, the DBA must create the role. Then the DBA can assign privileges to the role and users to the role.
Syntax
CREATE ROLE role;

In the syntax:
role is the name of the role to be created

Now that the role is created, the DBA can use the GRANT statement to assign users to the role as well as
assign privileges to the role.

Introduction to Oracle9i: SQL 13-10

13-10 Copyright © Oracle Corporation, 2001. All rights reserved.

Creating and Granting Privileges to a Role

CREATE ROLE manager;
Role created.

GRANT create table, create view
TO manager;
Grant succeeded.

GRANT manager TO DEHAAN, KOCHHAR;
Grant succeeded.

• Create a role

• Grant privileges to a role

• Grant a role to users

Creating a Role
The example in the slide creates a manager role and then allows managers to create tables and views. It
then grants DeHaan and Kochhar the role of managers. Now DeHaan and Kochhar can create tables and
views.
If users have multiple roles granted to them, they receive all of the privileges assoicated with all of the
roles.

Introduction to Oracle9i: SQL 13-11

13-11 Copyright © Oracle Corporation, 2001. All rights reserved.

Changing Your Password

• The DBA creates your user account and initializes
your password.

• You can change your password by using the
ALTER USER statement.

ALTER USER scott
IDENTIFIED BY lion;
User altered.

Changing Your Password
The DBA creates an account and initializes a password for every user. You can change your password by
using the ALTER USER statement.
Syntax
ALTER USER user IDENTIFIED BY password;

In the syntax:
user is the name of the user
password specifies the new password

Although this statement can be used to change your password, there are many other options. You must have
the ALTER USER privilege to change any other option.
For more information, see Oracle9i SQL Reference, “ALTER USER.”

Introduction to Oracle9i: SQL 13-12

Object Privileges
An object privilege is a privilege or right to perform a particular action on a specific table, view,
sequence, or procedure. Each object has a particular set of grantable privileges. The table in the slide lists
the privileges for various objects. Note that the only privileges that apply to a sequence are SELECT and
ALTER. UPDATE, REFERENCES, and INSERT can be restricted by specifying a subset of updatable
columns. A SELECT privilege can be restricted by creating a view with a subset of columns and granting
the SELECT privilege only on the view. A privilege granted on a synonym is converted to a privilege on
the base table referenced by the synonym.

13-12 Copyright © Oracle Corporation, 2001. All rights reserved.

Object
Privilege Table View Sequence Procedure

ALTER

DELETE

EXECUTE

INDEX

INSERT

REFERENCES

SELECT

UPDATE

Object Privileges

Introduction to Oracle9i: SQL 13-13

13-13 Copyright © Oracle Corporation, 2001. All rights reserved.

Object Privileges

• Object privileges vary from object to object.
• An owner has all the privileges on the object.
• An owner can give specific privileges on that

owner’s object.

GRANT object_priv [(columns)]
ON object
TO {user|role|PUBLIC}
[WITH GRANT OPTION];

Granting Object Privileges
Different object privileges are available for different types of schema objects. A user automatically has all
object privileges for schema objects contained in the user’s schema. A user can grant any object privilege
on any schema object that the user owns to any other user or role. If the grant includes WITH GRANT
OPTION, then the grantee can further grant the object privilege to other users; otherwise, the grantee can
use the privilege but cannot grant it to other users.
In the syntax:

object_priv is an object privilege to be granted
ALL specifies all object privileges
columns specifies the column from a table or view on which privileges

are granted
ON object is the object on which the privileges are granted
TO identifies to whom the privilege is granted
PUBLIC grants object privileges to all users
WITH GRANT OPTION allows the grantee to grant the object privileges to other users

and roles

Introduction to Oracle9i: SQL 13-14

Guidelines
• To grant privileges on an object, the object must be in your own schema, or you must have been granted the

object privileges WITH GRANT OPTION .
• An object owner can grant any object privilege on the object to any other user or role of the database.
• The owner of an object automatically acquires all object privileges on that object.

The first example in the slide grants users Sue and Rich the privilege to query your EMPLOYEES table. The
second example grants UPDATE privileges on specific columns in the DEPARTMENTS table to Scott and to the
manager role.
If Sue or Rich now want to SELECT data from the employees table, the syntax they must use is:

SELECT *

FROM scott.employees;

Alternatively, they can create a synonym for the table and SELECT from the synonym:
CREATE SYNONYM emp FOR scott.employees;

SELECT * FROM emp;

Note: DBAs generally allocate system privileges; any user who owns an object can grant object privileges.

13-14 Copyright © Oracle Corporation, 2001. All rights reserved.

Granting Object Privileges

• Grant query privileges on the EMPLOYEES table.

• Grant privileges to update specific columns to
users and roles.

GRANT select
ON employees
TO sue, rich;
Grant succeeded.

GRANT update (department_name, location_id)
ON departments
TO scott, manager;
Grant succeeded.

Introduction to Oracle9i: SQL 13-15

The WITH GRANT OPTION Keyword
A privilege that is granted with the WITH GRANT OPTION clause can be passed on to other users and
roles by the grantee. Object privileges granted with the WITH GRANT OPTION clause are revoked when
the grantor’s privilege is revoked.
The example in the slide gives user Scott access to your DEPARTMENTS table with the privileges to query
the table and add rows to the table. The example also allows Scott to give others these privileges.

The PUBLIC Keyword
An owner of a table can grant access to all users by using the PUBLIC keyword.
The second example allows all users on the system to query data from Alice’s DEPARTMENTS table.

13-15 Copyright © Oracle Corporation, 2001. All rights reserved.

Using the WITH GRANT OPTION and
PUBLIC Keywords

• Give a user authority to pass along privileges.

• Allow all users on the system to query data from
Alice’s DEPARTMENTS table.

GRANT select, insert
ON departments
TO scott
WITH GRANT OPTION;
Grant succeeded.

GRANT select
ON alice.departments
TO PUBLIC;
Grant succeeded.

Introduction to Oracle9i: SQL 13-16

13-16 Copyright © Oracle Corporation, 2001. All rights reserved.

Confirming Privileges Granted

Data Dictionary View Description
ROLE_SYS_PRIVS System privileges granted to roles
ROLE_TAB_PRIVS Table privileges granted to roles
USER_ROLE_PRIVS Roles accessible by the user
USER_TAB_PRIVS_MADE Object privileges granted on the

user’s objects
USER_TAB_PRIVS_RECD Object privileges granted to the

user
USER_COL_PRIVS_MADE Object privileges granted on the

columns of the user’s objects
USER_COL_PRIVS_RECD Object privileges granted to the

user on specific columns
USER_SYS_PRIVS Lists system privileges granted to

the user

Confirming Granted Privileges
If you attempt to perform an unauthorized operation (for example, deleting a row from a table for which
you do not have the DELETE privilege) the Oracle Server does not permit the operation to take place.
If you receive the Oracle Server error message table or view does not exist , you have done
either of the following:

• Named a table or view that does not exist
• Attempted to perform an operation on a table or view for which you do not have the appropriate

privilege
You can access the data dictionary to view the privileges that you have. The chart in the slide describes
various data dictionary views.

Introduction to Oracle9i: SQL 13-17

Revoking Object Privileges
Remove privileges granted to other users by using the REVOKE statement. When you use the REVOKE
statement, the privileges that you specify are revoked from the users you name and from any other users to
whom those privileges were granted through the WITH GRANT OPTION clause.
In the syntax:

CASCADE is required to remove any referential integrity constraints made to the
CONSTRAINTS object by means of the REFERENCES privilege

For more information, see Oracle9i SQL Reference, “REVOKE.”

13-17 Copyright © Oracle Corporation, 2001. All rights reserved.

How to Revoke Object Privileges

• You use the REVOKE statement to revoke privileges
granted to other users.

• Privileges granted to others through the WITH
GRANT OPTION clause are also revoked.

REVOKE {privilege [, privilege...]|ALL}
ON object
FROM {user[, user...]|role|PUBLIC}
[CASCADE CONSTRAINTS];

Introduction to Oracle9i: SQL 13-18

13-18 Copyright © Oracle Corporation, 2001. All rights reserved.

Revoking Object Privileges

As user Alice, revoke the SELECT and INSERT
privileges given to user Scott on the DEPARTMENTS
table.

REVOKE select, insert
ON departments
FROM scott;
Revoke succeeded.

Revoking Object Privileges (continued)
The example in the slide revokes SELECT and INSERT privileges given to user Scott on the
DEPARTMENTS table.
Note: If a user is granted a privilege with the WITH GRANT OPTION clause, that user can also grant the
privilege with the WITH GRANT OPTION clause, so that a long chain of grantees is possible, but no
circular grants are permitted. If the owner revokes a privilege from a user who granted the privilege to other
users, the revoking cascades to all privileges granted.
For example, if user A grants SELECT privilege on a table to user B including the WITH GRANT OPTION
clause, user B can grant to user C the SELECT privilege with the WITH GRANT OPTION clause as well,
and user C can then grant to user D the SELECT privilege. If user A revokes privilege from user B, then the
privileges granted to users C and D are also revoked.

Introduction to Oracle9i: SQL 13-19

13-19 Copyright © Oracle Corporation, 2001. All rights reserved.

Database Links

A database link connection allows local users to
access data on a remote database.

Local Remote

SELECT * FROM
emp@HQ_ACME.COM;

HQ_ACME.COM
Database

fred.EMP
Table

Database Links
A database link is a pointer that defines a one-way communication path from an Oracle database server to
another database server. The link pointer is actually defined as an entry in a data dictionary table. To access
the link, you must be connected to the local database that contains the data dictionary entry.
A database link connection is one-way in the sense that a client connected to local database A can use a link
stored in database A to access information in remote database B, but users connected to database B cannot
use the same link to access data in database A. If local users on database B want to access data on database
A, they must define a link that is stored in the data dictionary of database B.
A database link connection gives local users access to data on a remote database. For this connection to
occur, each database in the distributed system must have a unique global database name. The global
database name uniquely identifies a database server in a distributed system.
The great advantage of database links is that they allow users to access another user’s objects in a remote
database so that they are bounded by the privilege set of the object's owner. In other words, a local user can
access a remote database without having to be a user on the remote database.
The example shows a user SCOTT accessing the EMP table on the remote database with the global name
HQ.ACME.COM.
Note: Typically, the DBA is responsible for creating the database link. The dictionary view
USER_DB_LINKS contains information on links to which a user has access.

Introduction to Oracle9i: SQL 13-20

13-20 Copyright © Oracle Corporation, 2001. All rights reserved.

Database Links

• Create the database link.

• Write SQL statements that use the database link.

CREATE PUBLIC DATABASE LINK hq.acme.com
USING 'sales';
Database link created.

SELECT *
FROM fred.emp@HQ.ACME.COM;

Using Database Links
The example in the slide creates a database link. The USING clause identifies the service name of a remote
database.
Once the database link is created, you can write SQL statements against the data in the remote site. If a
synonym is set up, you can write SQL statements using the synonym.
For example:
CREATE PUBLIC SYNONYM HQ_EMP FOR emp@HQ.ACME.COM;

Then write a SQL statement that uses the synonym:
SELECT * FROM HQ_EMP;

You cannot grant privileges on remote objects.

Introduction to Oracle9i: SQL 13-21

Summary
DBAs establish initial database security for users by assigning privileges to the users.

• The DBA creates users who must have a password. The DBA is also responsible for establishing the
initial system privileges for a user.

• Once the user has created an object, the user can pass along any of the available object privileges to
other users or to all users by using the GRANT statement.

• A DBA can create roles by using the CREATE ROLE statement to pass along a collection of system
or object privileges to multiple users. Roles make granting and revoking privileges easier to maintain.

• Users can change their password by using the ALTER USER statement.
• You can remove privileges from users by using the REVOKE statement.
• With data dictionary views, users can view the privileges granted to them and those that are granted

on their objects.
• With database links, you can access data on remote databases. Privileges cannot be granted on remote

objects.

13-21 Copyright © Oracle Corporation, 2001. All rights reserved.

Summary

Statement Action
CREATE USER Creates a user (usually performed by

a DBA)
GRANT Gives other users privileges to

access the your objects
CREATE ROLE Creates a collection of privileges

(usually performed by a DBA)
ALTER USER Changes a user’s password
REVOKE Removes privileges on an object from

users

In this lesson you should have learned about DCL
statements that control access to the database and
database objects.

Introduction to Oracle9i: SQL 13-22

13-22 Copyright © Oracle Corporation, 2001. All rights reserved.

Practice 13 Overview

This practice covers the following topics:
• Granting other users privileges to your table
• Modifying another user’s table through the

privileges granted to you
• Creating a synonym
• Querying the data dictionary views related to

privileges

Practice 13 Overview
Team up with other students for this exercise about controlling access to database objects.

Introduction to Oracle9i: SQL 13-23

Practice 13

1. What privilege should a user be given to log on to the Oracle Server? Is this a system or an object
privilege?

2. What privilege should a user be given to create tables?

3. If you create a table, who can pass along privileges to other users on your table?

4. You are the DBA. You are creating many users who require the same system privileges.

What should you use to make your job easier?

5. What command do you use to change your password?

6. Grant another user access to your DEPARTMENTS table. Have the user grant you query access to his

or her DEPARTMENTS table.
7. Query all the rows in your DEPARTMENTS table.

8. Add a new row to your DEPARTMENTS table. Team 1 should add Education as department
number 500. Team 2 should add Human Resources department number 510. Query the other team’s
table.

9. Create a synonym for the other team’s DEPARTMENTS table.

Introduction to Oracle9i: SQL 13-24

Practice 13 (continued)

10. Query all the rows in the other team’s DEPARTMENTS table by using your synonym.

Team 1 SELECT statement results:

Team 2 SELECT statement results:

Introduction to Oracle9i: SQL 13-25

Practice 13 (continued)
11. Query the USER_TABLES data dictionary to see information about the tables that you own.

12. Query the ALL_TABLES data dictionary view to see information about all the tables that you can
access. Exclude tables that are you own.
Note: Your list may not exactly match the list shown below.

13. Revoke the SELECT privilege on your table from the other team.

owner

	1
	2
	3

