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Chapter 1. Introduction

1.1. What Is A Kernel Module?

So, you want to write a kernel module. You know C, you've written a few normal programs to run as
processes, and now you want to get to where the real action is, to where a single wild pointer can wipe out
your file system and a core dump means a reboot.

What exactly is a kernel module? Modules are pieces of code that can be loaded and unloaded into the kernel
upon demand. They extend the functionality of the kernel without the need to reboot the system. For example,
one type of module is the device driver, which allows the kernel to access hardware connected to the system.
Without modules, we would have to build monolithic kernels and add new functionality directly into the
kernel image. Besides having larger kernels, this has the disadvantage of requiring us to rebuild and reboot the
kernel every time we want new functionality.

1.2. How Do Modules Get Into The Kernel?

You can see what modules are already loaded into the kernel by running lsmod, which gets its information by
reading the file /proc/modules.

How do these modules find their way into the kernel? When the kernel needs a feature that is not resident in
the kernel, the kernel module daemon kmod[1] execs modprobe to load the module in. modprobe is passed a
string in one of two forms:

A module name like softdog or ppp.• 
A more generic identifier like char−major−10−30.• 

If modprobe is handed a generic identifier, it first looks for that string in the file /etc/modules.conf. If
it finds an alias line like:

   alias char−major−10−30 softdog

it knows that the generic identifier refers to the module softdog.o.

Next, modprobe looks through the file /lib/modules/version/modules.dep, to see if other
modules must be loaded before the requested module may be loaded. This file is created by depmod −a and
contains module dependencies. For example, msdos.o requires the fat.o module to be already loaded into
the kernel. The requested module has a dependancy on another module if the other module defines symbols
(variables or functions) that the requested module uses.

Lastly, modprobe uses insmod to first load any prerequisite modules into the kernel, and then the requested
module. modprobe directs insmod to /lib/modules/version/[2], the standard directory for modules.
insmod is intended to be fairly dumb about the location of modules, whereas modprobe is aware of the default
location of modules. So for example, if you wanted to load the msdos module, you'd have to either run:

    insmod /lib/modules/2.5.1/kernel/fs/fat/fat.o
    insmod /lib/modules/2.5.1/kernel/fs/msdos/msdos.o

Chapter 1. Introduction 2



or just run "modprobe −a msdos".

Linux distros provide modprobe, insmod and depmod as a package called modutils or mod−utils.

Before finishing this chapter, let's take a quick look at a piece of /etc/modules.conf:

    #This file is automatically generated by update−modules
    path[misc]=/lib/modules/2.4.?/local
    keep
    path[net]=~p/mymodules
    options mydriver irq=10
    alias eth0 eepro

Lines beginning with a '#' are comments. Blank lines are ignored.

The path[misc] line tells modprobe to replace the search path for misc modules with the directory
/lib/modules/2.4.?/local. As you can see, shell meta characters are honored.

The path[net] line tells modprobe to look for net modules in the directory ~p/mymodules, however, the
"keep" directive preceding the path[net] directive tells modprobe to add this directory to the standard
search path of net modules as opposed to replacing the standard search path, as we did for the misc modules.

The alias line says to load in eepro.o whenever kmod requests that the generic identifier `eth0' be loaded.

You won't see lines like "alias block−major−2 floppy" in /etc/modules.conf because modprobe already
knows about the standard drivers which will be used on most systems.

Now you know how modules get into the kernel. There's a bit more to the story if you want to write your own
modules which depend on other modules (we calling this `stacking modules'). But this will have to wait for a
future chapter. We have a lot to cover before addressing this relatively high−level issue.

1.2.1. Before We Begin

Before we delve into code, there are a few issues we need to cover. Everyone's system is different and
everyone has their own groove. Getting your first "hello world" program to compile and load correctly can
sometimes be a trick. Rest assured, after you get over the initial hurdle of doing it for the first time, it will be
smooth sailing thereafter.

1.2.1.1. Modversioning

A module compiled for one kernel won't load if you boot a different kernel unless you enable
CONFIG_MODVERSIONS in the kernel. We won't go into module versioning until later in this guide. Until
we cover modversions, the examples in the guide may not work if you're running a kernel with modversioning
turned on. However, most stock Linux distro kernels come with it turned on. If you're having trouble loading
the modules because of versioning errors, compile a kernel with modversioning turned off.

The Linux Kernel Module Programming Guide
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1.2.1.2. Using X

It is highly recommended that you type in, compile and load all the examples this guide discusses. It's also
highly recommended you do this from a console. You should not be working on this stuff in X.

Modules can't print to the screen like printf() can, but they can log information and warnings, which ends
up being printed on your screen, but only on a console. If you insmod a module from an xterm, the
information and warnings will be logged, but only to your log files. You won't see it unless you look through
your log files. To have immediate access to this information, do all your work from console.

1.2.1.3. Compiling Issues and Kernel Version

Very often, Linux distros will distribute kernel source that has been patched in various non−standard ways,
which may cause trouble.

A more common problem is that some Linux distros distribute incomplete kernel headers. You'll need to
compile your code using various header files from the Linux kernel. Murphy's Law states that the headers that
are missing are exactly the ones that you'll need for your module work.

To avoid these two problems, I highly recommend that you download, compile and boot into a fresh, stock
Linux kernel which can be downloaded from any of the Linux kernel mirror sites. See the Linux Kernel
HOWTO for more details.

Ironically, this can also cause a problem. By default, gcc on your system may look for the kernel headers in
their default location rather than where you installed the new copy of the kernel (usually in /usr/src/.
This can be fixed by using gcc's −I switch.

The Linux Kernel Module Programming Guide
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Chapter 2. Hello World

2.1. Hello, World (part 1): The Simplest Module

When the first caveman programmer chiseled the first program on the walls of the first cave computer, it was
a program to paint the string `Hello, world' in Antelope pictures. Roman programming textbooks began with
the `Salut, Mundi' program. I don't know what happens to people who break with this tradition, but I think it's
safer not to find out. We'll start with a series of hello world programs that demonstrate the different aspects of
the basics of writing a kernel module.

Here's the simplest module possible. Don't compile it yet; we'll cover module compilation in the next section.

Example 2−1. hello−1.c

/*  hello−1.c − The simplest kernel module.
 */
#include <linux/module.h>  /* Needed by all modules */
#include <linux/kernel.h>  /* Needed for KERN_ALERT */

int init_module(void)
{
   printk("<1>Hello world 1.\n");

   // A non 0 return means init_module failed; module can't be loaded.
   return 0;
}

void cleanup_module(void)
{
  printk(KERN_ALERT "Goodbye world 1.\n");
}  

Kernel modules must have at least two functions: a "start" (initialization) function called init_module()
which is called when the module is insmoded into the kernel, and an "end" (cleanup) function called
cleanup_module() which is called just before it is rmmoded. Actually, things have changed starting with
kernel 2.3.13. You can now use whatever name you like for the start and end functions of a module, and you'll
learn how to do this in Section 2.3. In fact, the new method is the preferred method. However, many people
still use init_module() and cleanup_module() for their start and end functions.

Typically, init_module() either registers a handler for something with the kernel, or it replaces one of the
kernel functions with its own code (usually code to do something and then call the original function). The
cleanup_module() function is supposed to undo whatever init_module() did, so the module can be
unloaded safely.

Lastly, every kernel module needs to include linux/module.h. We needed to include
linux/kernel.h only for the macro expansion for the printk() log level, KERN_ALERT, which you'll
learn about in Section 2.1.1.
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2.1.1. Introducing printk()

Despite what you might think, printk() was not meant to communicate information to the user, even
though we used it for exactly this purpose in hello−1! It happens to be a logging mechanism for the kernel,
and is used to log information or give warnings. Therefore, each printk() statement comes with a priority,
which is the <1> and KERN_ALERT you see. There are 8 priorities and the kernel has macros for them, so
you don't have to use cryptic numbers, and you can view them (and their meanings) in linux/kernel.h.
If you don't specify a priority level, the default priority, DEFAULT_MESSAGE_LOGLEVEL, will be used.

Take time to read through the priority macros. The header file also describes what each priority means. In
practise, don't use number, like <4>. Always use the macro, like KERN_WARNING.

If the priority is less than int console_loglevel, the message is printed on your current terminal. If
both syslogd and klogd are running, then the message will also get appended to /var/log/messages,
whether it got printed to the console or not. We use a high priority, like KERN_ALERT, to make sure the
printk() messages get printed to your console rather than just logged to your logfile. When you write real
modules, you'll want to use priorities that are meaningful for the situation at hand.

2.2. Compiling Kernel Modules

Kernel modules need to be compiled with certain gcc options to make them work. In addition, they also need
to be compiled with certain symbols defined. This is because the kernel header files need to behave
differently, depending on whether we're compiling a kernel module or an executable. You can define symbols
using gcc's −D option, or with the #define preprocessor command. We'll cover what you need to do in
order to compile kernel modules in this section.

−c: A kernel module is not an independant executable, but an object file which will be linked into the
kernel during runtime using insmod. As a result, modules should be compiled with the −c flag.

• 

−O2: The kernel makes extensive use of inline functions, so modules must be compiled with the
optimization flag turned on. Without optimization, some of the assembler macros calls will be
mistaken by the compiler for function calls. This will cause loading the module to fail, since insmod
won't find those functions in the kernel.

• 

−W −Wall: A programming mistake can take take your system down. You should always turn on
compiler warnings, and this applies to all your compiling endeavors, not just module compilation.

• 

−isystem /lib/modules/`uname −r`/build/include: You must use the kernel
headers of the kernel you're compiling against. Using the default /usr/include/linux won't
work.

• 

−D__KERNEL__: Defining this symbol tells the header files that the code will be run in kernel mode,
not as a user process.

• 

−DMODULE: This symbol tells the header files to give the appropriate definitions for a kernel module.• 

We use gcc's −isystem option instead of −I because it tells gcc to surpress some "unused variable"
warnings that −W −Wall causes when you include module.h. By using −isystem under gcc−3.0, the
kernel header files are treated specially, and the warnings are surpressed. If you instead use −I (or even
−isystem under gcc 2.9x), the "unused variable" warnings will be printed. Just ignore them if they do.

So, let's look at a simple Makefile for compiling a module named hello−1.c:

Example 2−2. Makefile for a basic kernel module

The Linux Kernel Module Programming Guide
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TARGET  := hello−1
WARN    := −W −Wall −Wstrict−prototypes −Wmissing−prototypes
INCLUDE := −isystem /lib/modules/`uname −r`/build/include
CFLAGS  := −O2 −DMODULE −D__KERNEL__ ${WARN} ${INCLUDE}
CC      := gcc−3.0

${TARGET}.o: ${TARGET}.c

.PHONY: clean

clean:
    rm −rf ${TARGET}.o

As an exercise to the reader, compile hello−1.c and insert it into the kernel with insmod ./hello−1.o
(ignore anything you see about tainted kernels; we'll cover that shortly). Neat, eh? All modules loaded into the
kernel are listed in /proc/modules. Go ahead and cat that file to see that your module is really a part of
the kernel. Congratulations, you are now the author of Linux kernel code! When the novelty wares off,
remove your module from the kernel by using rmmod hello−1. Take a look at /var/log/messages just
to see that it got logged to your system logfile.

Here's another exercise to the reader. See that comment above the return statement in init_module()?
Change the return value to something non−zero, recompile and load the module again. What happens?

2.3. Hello World (part 2)

As of Linux 2.4, you can rename the init and cleanup functions of your modules; they no longer have to be
called init_module() and cleanup_module() respectively. This is done with the module_init()
and module_exit() macros. These macros are defined in linux/init.h. The only caveat is that your
init and cleanup functions must be defined before calling the macros, otherwise you'll get compilation errors.
Here's an example of this technique:

Example 2−3. hello−2.c

/*  hello−2.c − Demonstrating the module_init() and module_exit() macros.  This is the 
 *     preferred over using init_module() and cleanup_module().
 */
#include <linux/module.h>   // Needed by all modules
#include <linux/kernel.h>   // Needed for KERN_ALERT
#include <linux/init.h>     // Needed for the macros

static int hello_2_init(void)
{
   printk(KERN_ALERT "Hello, world 2\n");
   return 0;
}

static void hello_2_exit(void)
{
   printk(KERN_ALERT "Goodbye, world 2\n");
}

module_init(hello_2_init);

The Linux Kernel Module Programming Guide
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module_exit(hello_2_exit);

So now we have two real kernel modules under our belt. With productivity as high as ours, we should have a
high powered Makefile. Here's a more advanced Makefile which will compile both our modules at the same
time. It's optimized for brevity and scalability. If you don't understand it, I urge you to read the makefile info
pages or the GNU Make Manual.

Example 2−4. Makefile for both our modules

WARN    := −W −Wall −Wstrict−prototypes −Wmissing−prototypes
INCLUDE := −isystem /lib/modules/`uname −r`/build/include
CFLAGS  := −O2 −DMODULE −D__KERNEL__ ${WARN} ${INCLUDE}
CC      := gcc−3.0
OBJS    := ${patsubst %.c, %.o, ${wildcard *.c}}

all: ${OBJS}

.PHONY: clean

clean:
    rm −rf *.o

As an exercise to the reader, if we had another module in the same directory, say hello−3.c, how would
you modify this Makefile to automatically compile that module?

2.4. Hello World (part 3): The __init and __exit Macros

This demonstrates a feature of kernel 2.2 and later. Notice the change in the definitions of the init and cleanup
functions. The __init macro causes the init function to be discarded and its memory freed once the init
function finishes for built−in drivers, but not loadable modules. If you think about when the init function is
invoked, this makes perfect sense.

There is also an __initdata which works similarly to __init but for init variables rather than functions.

The __exit macro causes the omission of the function when the module is built into the kernel, and like
__exit, has no effect for loadable modules. Again, if you consider when the cleanup function runs, this
makes complete sense; built−in drivers don't need a cleanup function, while loadable modules do.

These macros are defined in linux/init.h and serve to free up kernel memory. When you boot your
kernel and see something like Freeing unused kernel memory: 236k freed, this is precisely
what the kernel is freeing.

Example 2−5. hello−3.c

/*  hello−3.c − Illustrating the __init, __initdata and __exit macros.
 */
#include <linux/module.h>      /* Needed by all modules */
#include <linux/kernel.h>      /* Needed for KERN_ALERT */
#include <linux/init.h>        /* Needed for the macros */

static int hello3_data __initdata = 3;

The Linux Kernel Module Programming Guide
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static int __init hello_3_init(void)
{
   printk(KERN_ALERT "Hello, world %d\n", hello3_data);
   return 0;
}

static void __exit hello_3_exit(void)
{
   printk(KERN_ALERT "Goodbye, world 3\n");
}

module_init(hello_3_init);
module_exit(hello_3_exit);

By the way, you may see the directive "__initfunction()" in drivers written for Linux 2.2 kernels:

 __initfunction(int init_module(void))
{
   printk(KERN_ALERT "Hi there.\n");
   return 0;
}

This macro served the same purpose as __init, but is now very deprecated in favor of __init. I only
mention it because you might see it modern kernels. As of 2.4.18, there are 38 references to
__initfunction(), and of 2.4.20, there are 37 references. However, don't use it in your own code.

2.5. Hello World (part 4): Licensing and Module
Documentation

If you're running kernel 2.4 or later, you might have noticed something like this when you loaded the previous
example modules:

# insmod hello−3.o
Warning: loading hello−3.o will taint the kernel: no license
  See http://www.tux.org/lkml/#export−tainted for information about tainted modules
Hello, world 3
Module hello−3 loaded, with warnings

In kernel 2.4 and later, a mechanism was devised to identify code licensed under the GPL (and friends) so
people can be warned that the code is non open−source. This is accomplished by the MODULE_LICENSE()
macro which is demonstrated in the next piece of code. By setting the license to GPL, you can keep the
warning from being printed. This license mechanism is defined and documented in linux/module.h.

Similarly, MODULE_DESCRIPTION() is used to describe what the module does, MODULE_AUTHOR()
declares the module's author, and MODULE_SUPPORTED_DEVICE() declares what types of devices the
module supports.

These macros are all defined in linux/module.h and aren't used by the kernel itself. They're simply for
documentation and can be viewed by a tool like objdump. As an exercise to the reader, try grepping through
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linux/drivers to see how module authors use these macros to document their modules.

Example 2−6. hello−4.c

/*  hello−4.c − Demonstrates module documentation.
 */
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/init.h>
#define DRIVER_AUTHOR "Peiter Jay Salzman <p@dirac.org>"
#define DRIVER_DESC   "A sample driver"

int init_hello_3(void);
void cleanup_hello_3(void);

static int init_hello_4(void)
{
   printk(KERN_ALERT "Hello, world 4\n");
   return 0;
}

static void cleanup_hello_4(void)
{
   printk(KERN_ALERT "Goodbye, world 4\n");
}

module_init(init_hello_4);
module_exit(cleanup_hello_4);

/*  You can use strings, like this:
 */
MODULE_LICENSE("GPL");           // Get rid of taint message by declaring code as GPL.

/*  Or with defines, like this:
 */
MODULE_AUTHOR(DRIVER_AUTHOR);    // Who wrote this module?
MODULE_DESCRIPTION(DRIVER_DESC); // What does this module do?

/*  This module uses /dev/testdevice.  The MODULE_SUPPORTED_DEVICE macro might be used in
 *  the future to help automatic configuration of modules, but is currently unused other
 *  than for documentation purposes.
 */
MODULE_SUPPORTED_DEVICE("testdevice");

2.6. Passing Command Line Arguments to a Module

Modules can take command line arguments, but not with the argc/argv you might be used to.

To allow arguments to be passed to your module, declare the variables that will take the values of the
command line arguments as global and then use the MODULE_PARM() macro, (defined in
linux/module.h) to set the mechanism up. At runtime, insmod will fill the variables with any command
line arguments that are given, like ./insmod mymodule.o myvariable=5. The variable declarations and
macros should be placed at the beginning of the module for clarity. The example code should clear up my
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admittedly lousy explanation.

The MODULE_PARM() macro takes 2 arguments: the name of the variable and its type. The supported
variable types are "b": single byte, "h": short int, "i": integer, "l": long int and "s": string, and the integer
types can be signed as usual or unsigned. Strings should be declared as "char *" and insmod will allocate
memory for them. You should always try to give the variables an initial default value. This is kernel code, and
you should program defensively. For example:

    int myint = 3;
    char *mystr;

    MODULE_PARM(myint, "i");
    MODULE_PARM(mystr, "s");

Arrays are supported too. An integer value preceding the type in MODULE_PARM will indicate an array of
some maximum length. Two numbers separated by a '−' will give the minimum and maximum number of
values. For example, an array of shorts with at least 2 and no more than 4 values could be declared as:

    int myshortArray[4];
    MODULE_PARM (myintArray, "3−9i");

A good use for this is to have the module variable's default values set, like an port or IO address. If the
variables contain the default values, then perform autodetection (explained elsewhere). Otherwise, keep the
current value. This will be made clear later on.

Lastly, there's a macro function, MODULE_PARM_DESC(), that is used to document arguments that the
module can take. It takes two parameters: a variable name and a free form string describing that variable.

Example 2−7. hello−5.c

/*  hello−5.c − Demonstrates command line argument passing to a module.
 */
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/init.h>
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Peiter Jay Salzman");

// These global variables can be set with command line arguments when you insmod
// the module in. 
//
static u8             mybyte = 'A';
static unsigned short myshort = 1;
static int            myint = 20;
static long           mylong = 9999;
static char           *mystring = "blah";
static int            myintArray[2] = { 0, 420 };

/*  Now we're actually setting the mechanism up −− making the variables command
 *  line arguments rather than just a bunch of global variables.
 */
MODULE_PARM(mybyte, "b");
MODULE_PARM(myshort, "h");
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MODULE_PARM(myint, "i");
MODULE_PARM(mylong, "l");
MODULE_PARM(mystring, "s");
MODULE_PARM(myintArray, "1−2i");

MODULE_PARM_DESC(mybyte, "This byte really does nothing at all.");
MODULE_PARM_DESC(myshort, "This short is *extremely* important.");
// You get the picture.  Always use a MODULE_PARM_DESC() for each MODULE_PARM().

static int __init hello_5_init(void)
{
   printk(KERN_ALERT "mybyte is an 8 bit integer: %i\n", mybyte);
   printk(KERN_ALERT "myshort is a short integer: %hi\n", myshort);
   printk(KERN_ALERT "myint is an integer: %i\n", myint);
   printk(KERN_ALERT "mylong is a long integer: %li\n", mylong);
   printk(KERN_ALERT "mystring is a string: %s\n", mystring);
         printk(KERN_ALERT "myintArray is %i and %i\n", myintArray[0], myintArray[1]);
   return 0;
}

static void __exit hello_5_exit(void)
{
   printk(KERN_ALERT "Goodbye, world 5\n");
}

module_init(hello_5_init);
module_exit(hello_5_exit);

I would recommend playing around with this code:

    satan# insmod hello−5.o mystring="bebop" mybyte=255 myintArray=−1
    mybyte is an 8 bit integer: 255
    myshort is a short integer: 1
    myint is an integer: 20
    mylong is a long integer: 9999
    mystring is a string: bebop
    myintArray is −1 and 420

    satan# rmmod hello−5
    Goodbye, world 5

    satan# insmod hello−5.o mystring="supercalifragilisticexpialidocious" \
    > mybyte=256 myintArray=−1,−1
    mybyte is an 8 bit integer: 0
    myshort is a short integer: 1
    myint is an integer: 20
    mylong is a long integer: 9999
    mystring is a string: supercalifragilisticexpialidocious
    myintArray is −1 and −1

    satan# rmmod hello−5
    Goodbye, world 5

    satan# insmod hello−5.o mylong=hello
    hello−5.o: invalid argument syntax for mylong: 'h'
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2.7. Modules Spanning Multiple Files

Sometimes it makes sense to divide a kernel module between several source files. In this case, you need to:

In all the source files but one, add the line #define __NO_VERSION__. This is important because
module.h normally includes the definition of kernel_version, a global variable with the
kernel version the module is compiled for. If you need version.h, you need to include it yourself,
because module.h won't do it for you with __NO_VERSION__.

1. 

Compile all the source files as usual.2. 
Combine all the object files into a single one. Under x86, use ld −m elf_i386 −r −o <module
name.o> <1st src file.o> <2nd src file.o>.

3. 

Here's an example of such a kernel module.

Example 2−8. start.c

/*  start.c − Illustration of multi filed modules
 */

#include <linux/kernel.h>       /* We're doing kernel work */
#include <linux/module.h>       /* Specifically, a module */

int init_module(void)
{
  printk("Hello, world − this is the kernel speaking\n");
  return 0;
}

The next file:

Example 2−9. stop.c

/*  stop.c − Illustration of multi filed modules
 */

#if defined(CONFIG_MODVERSIONS) && ! defined(MODVERSIONS)
   #include <linux/modversions.h> /* Will be explained later */
   #define MODVERSIONS
#endif        
#include <linux/kernel.h>  /* We're doing kernel work */
#include <linux/module.h>  /* Specifically, a module  */
#define __NO_VERSION__     /* It's not THE file of the kernel module */
#include <linux/version.h> /* Not included by module.h because of
                                              __NO_VERSION__ */

void cleanup_module()
{
   printk("<1>Short is the life of a kernel module\n");
}  

And finally, the makefile:
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Example 2−10. Makefile for a multi−filed module

CC=gcc
MODCFLAGS := −O −Wall −DMODULE −D__KERNEL__

hello.o:        hello2_start.o hello2_stop.o
   ld −m elf_i386 −r −o hello2.o hello2_start.o hello2_stop.o

start.o: hello2_start.c
   ${CC} ${MODCFLAGS} −c hello2_start.c

stop.o: hello2_stop.c
   ${CC} ${MODCFLAGS} −c hello2_stop.c

The Linux Kernel Module Programming Guide

Chapter 2. Hello World 14



Chapter 3. Preliminaries

3.1. Modules vs Programs

3.1.1. How modules begin and end

A program usually begins with a main() function, executes a bunch of instructions and terminates upon
completion of those instructions. Kernel modules work a bit differently. A module always begin with either
the init_module or the function you specify with module_init call. This is the entry function for
modules; it tells the kernel what functionality the module provides and sets up the kernel to run the module's
functions when they're needed. Once it does this, entry function returns and the module does nothing until the
kernel wants to do something with the code that the module provides.

All modules end by calling either cleanup_module or the function you specify with the module_exit
call. This is the exit function for modules; it undoes whatever entry function did. It unregisters the
functionality that the entry function registered.

Every module must have an entry function and an exit function. Since there's more than one way to specify
entry and exit functions, I'll try my best to use the terms `entry function' and `exit function', but if I slip and
simply refer to them as init_module and cleanup_module, I think you'll know what I mean.

3.1.2. Functions available to modules

Programmers use functions they don't define all the time. A prime example of this is printf(). You use
these library functions which are provided by the standard C library, libc. The definitions for these functions
don't actually enter your program until the linking stage, which insures that the code (for printf() for
example) is available, and fixes the call instruction to point to that code.

Kernel modules are different here, too. In the hello world example, you might have noticed that we used a
function, printk() but didn't include a standard I/O library. That's because modules are object files whose
symbols get resolved upon insmod'ing. The definition for the symbols comes from the kernel itself; the only
external functions you can use are the ones provided by the kernel. If you're curious about what symbols have
been exported by your kernel, take a look at /proc/ksyms.

One point to keep in mind is the difference between library functions and system calls. Library functions are
higher level, run completely in user space and provide a more convenient interface for the programmer to the
functions that do the real work−−−system calls. System calls run in kernel mode on the user's behalf and are
provided by the kernel itself. The library function printf() may look like a very general printing function,
but all it really does is format the data into strings and write the string data using the low−level system call
write(), which then sends the data to standard output.

Would you like to see what system calls are made by printf()? It's easy! Compile the following program:

    #include <stdio.h>
    int main(void)
    { printf("hello"); return 0; }
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with gcc −Wall −o hello hello.c. Run the exectable with strace hello. Are you impressed? Every line you see
corresponds to a system call. strace[3] is a handy program that gives you details about what system calls a
program is making, including which call is made, what its arguments are what it returns. It's an invaluable tool
for figuring out things like what files a program is trying to access. Towards the end, you'll see a line which
looks like write(1, "hello", 5hello). There it is. The face behind the printf() mask. You may
not be familiar with write, since most people use library functions for file I/O (like fopen, fputs, fclose). If
that's the case, try looking at man 2 write. The 2nd man section is devoted to system calls (like kill() and
read(). The 3rd man section is devoted to library calls, which you would probably be more familiar with
(like cosh() and random()).

You can even write modules to replace the kernel's system calls, which we'll do shortly. Crackers often make
use of this sort of thing for backdoors or trojans, but you can write your own modules to do more benign
things, like have the kernel write Tee hee, that tickles! everytime someone tries to delete a file on your system.

3.1.3. User Space vs Kernel Space

A kernel is all about access to resources, whether the resource in question happens to be a video card, a hard
drive or even memory. Programs often compete for the same resource. As I just saved this document,
updatedb started updating the locate database. My vim session and updatedb are both using the hard drive
concurrently. The kernel needs to keep things orderly, and not give users access to resources whenever they
feel like it. To this end, a CPU can run in different modes. Each mode gives a different level of freedom to do
what you want on the system. The Intel 80386 architecture has 4 of these modes, which are called rings. Unix
uses only two rings; the highest ring (ring 0, also known as `supervisor mode' where everything is allowed to
happen) and the lowest ring, which is called `user mode'.

Recall the discussion about library functions vs system calls. Typically, you use a library function in user
mode. The library function calls one or more system calls, and these system calls execute on the library
function's behalf, but do so in supervisor mode since they are part of the kernel itself. Once the system call
completes its task, it returns and execution gets transfered back to user mode.

3.1.4. Name Space

When you write a small C program, you use variables which are convenient and make sense to the reader. If,
on the other hand, you're writing routines which will be part of a bigger problem, any global variables you
have are part of a community of other peoples' global variables; some of the variable names can clash. When a
program has lots of global variables which aren't meaningful enough to be distinguished, you get namespace
pollution. In large projects, effort must be made to remember reserved names, and to find ways to develop a
scheme for naming unique variable names and symbols.

When writing kernel code, even the smallest module will be linked against the entire kernel, so this is
definitely an issue. The best way to deal with this is to declare all your variables as static and to use a
well−defined prefix for your symbols. By convention, all kernel prefixes are lowercase. If you don't want to
declare everything as static, another option is to declare a symbol table and register it with a kernel. We'll
get to this later.

The file /proc/ksyms holds all the symbols that the kernel knows about and which are therefore accessible
to your modules since they share the kernel's codespace.
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3.1.5. Code space

Memory management is a very complicated subject−−−the majority of O'Reilly's `Understanding The Linux
Kernel' is just on memory management! We're not setting out to be experts on memory managements, but we
do need to know a couple of facts to even begin worrying about writing real modules.

If you haven't thought about what a segfault really means, you may be surprised to hear that pointers don't
actually point to memory locations. Not real ones, anyway. When a process is created, the kernel sets aside a
portion of real physical memory and hands it to the process to use for its executing code, variables, stack, heap
and other things which a computer scientist would know about[4]. This memory begins with $0$ and extends
up to whatever it needs to be. Since the memory space for any two processes don't overlap, every process that
can access a memory address, say 0xbffff978, would be accessing a different location in real physical
memory! The processes would be accessing an index named 0xbffff978 which points to some kind of
offset into the region of memory set aside for that particular process. For the most part, a process like our
Hello, World program can't access the space of another process, although there are ways which we'll talk
about later.

The kernel has its own space of memory as well. Since a module is code which can be dynamically inserted
and removed in the kernel (as opposed to a semi−autonomous object), it shares the kernel's codespace rather
than having its own. Therefore, if your module segfaults, the kernel segfaults. And if you start writing over
data because of an off−by−one error, then you're trampling on kernel code. This is even worse than it sounds,
so try your best to be careful.

By the way, I would like to point out that the above discussion is true for any operating system which uses a
monolithic kernel[5]. There are things called microkernels which have modules which get their own
codespace. The GNU Hurd and QNX Neutrino are two examples of a microkernel.

3.1.6. Device Drivers

One class of module is the device driver, which provides functionality for hardware like a TV card or a serial
port. On unix, each piece of hardware is represented by a file located in /dev named a device file
which provides the means to communicate with the hardware. The device driver provides the communication
on behalf of a user program. So the es1370.o sound card device driver might connect the /dev/sound
device file to the Ensoniq IS1370 sound card. A userspace program like mp3blaster can use /dev/sound
without ever knowing what kind of sound card is installed.

3.1.6.1. Major and Minor Numbers

Let's look at some device files. Here are device files which represent the first three partitions on the primary
master IDE hard drive:

    # ls −l /dev/hda[1−3]
    brw−rw−−−−  1 root  disk  3, 1 Jul  5  2000 /dev/hda1
    brw−rw−−−−  1 root  disk  3, 2 Jul  5  2000 /dev/hda2
    brw−rw−−−−  1 root  disk  3, 3 Jul  5  2000 /dev/hda3

Notice the column of numbers separated by a comma? The first number is called the device's major number.
The second number is the minor number. The major number tells you which driver is used to access the
hardware. Each driver is assigned a unique major number; all device files with the same major number are
controlled by the same driver. All the above major numbers are 3, because they're all controlled by the same
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driver.

The minor number is used by the driver to distinguish between the various hardware it controls. Returning to
the example above, although all three devices are handled by the same driver they have unique minor numbers
because the driver sees them as being different pieces of hardware.

Devices are divided into two types: character devices and block devices. The difference is that block devices
have a buffer for requests, so they can choose the best order in which to respond to the requests. This is
important in the case of storage devices, where it's faster to read or write sectors which are close to each other,
rather than those which are further apart. Another difference is that block devices can only accept input and
return output in blocks (whose size can vary according to the device), whereas character devices are allowed
to use as many or as few bytes as they like. Most devices in the world are character, because they don't need
this type of buffering, and they don't operate with a fixed block size. You can tell whether a device file is for a
block device or a character device by looking at the first character in the output of ls −l. If it's `b' then it's a
block device, and if it's `c' then it's a character device. The devices you see above are block devices. Here are
some character devices (the serial ports):

    crw−rw−−−−  1 root  dial 4, 64 Feb 18 23:34 /dev/ttyS0
    crw−r−−−−−  1 root  dial 4, 65 Nov 17 10:26 /dev/ttyS1
    crw−rw−−−−  1 root  dial 4, 66 Jul  5  2000 /dev/ttyS2
    crw−rw−−−−  1 root  dial 4, 67 Jul  5  2000 /dev/ttyS3

If you want to see which major numbers have been assigned, you can look at
/usr/src/linux/Documentation/devices.txt.

When the system was installed, all of those device files were created by the mknod command. To create a
new char device named `coffee' with major/minor number 12 and 2, simply do mknod /dev/coffee c 12 2.
You don't have to put your device files into /dev, but it's done by convention. Linus put his device files in
/dev, and so should you. However, when creating a device file for testing purposes, it's probably OK to place
it in your working directory where you compile the kernel module. Just be sure to put it in the right place
when you're done writing the device driver.

I would like to make a few last points which are implicit from the above discussion, but I'd like to make them
explicit just in case. When a device file is accessed, the kernel uses the major number of the file to determine
which driver should be used to handle the access. This means that the kernel doesn't really need to use or even
know about the minor number. The driver itself is the only thing that cares about the minor number. It uses
the minor number to distinguish between different pieces of hardware.

By the way, when I say `hardware', I mean something a bit more abstract than a PCI card that you can hold in
your hand. Look at these two device files:

    % ls −l /dev/fd0 /dev/fd0u1680
    brwxrwxrwx   1 root  floppy   2,  0 Jul  5  2000 /dev/fd0
    brw−rw−−−−   1 root  floppy   2, 44 Jul  5  2000 /dev/fd0u1680

By now you can look at these two device files and know instantly that they are block devices and are handled
by same driver (block major 2). You might even be aware that these both represent your floppy drive, even if
you only have one floppy drive. Why two files? One represents the floppy drive with 1.44 MB of storage.
The other is the same floppy drive with 1.68 MB of storage, and corresponds to what some people call a
`superformatted' disk. One that holds more data than a standard formatted floppy. So here's a case where two
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device files with different minor number actually represent the same piece of physical hardware. So just be
aware that the word `hardware' in our discussion can mean something very abstract.
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Chapter 4. Character Device Files

4.1. Character Device Drivers

4.1.1. The file_operations Structure

The file_operations structure is defined in linux/fs.h, and holds pointers to functions defined by the
driver that perform various operations on the device. Each field of the structure corresponds to the address of
some function defined by the driver to handle a requested operation.

For example, every character driver needs to define a function that reads from the device. The file_operations
structure holds the address of the module's function that performs that operation. Here is what the definition
looks like for kernel 2.4.2:

    struct file_operations {
       struct module *owner;
       loff_t (*llseek) (struct file *, loff_t, int);
       ssize_t (*read) (struct file *, char *, size_t, loff_t *);
       ssize_t (*write) (struct file *, const char *, size_t, loff_t *);
       int (*readdir) (struct file *, void *, filldir_t);
       unsigned int (*poll) (struct file *, struct poll_table_struct *);
       int (*ioctl) (struct inode *, struct file *, unsigned int, unsigned long);
       int (*mmap) (struct file *, struct vm_area_struct *);
       int (*open) (struct inode *, struct file *);
       int (*flush) (struct file *);
       int (*release) (struct inode *, struct file *);
       int (*fsync) (struct file *, struct dentry *, int datasync);
       int (*fasync) (int, struct file *, int);
       int (*lock) (struct file *, int, struct file_lock *);
         ssize_t (*readv) (struct file *, const struct iovec *, unsigned long,
          loff_t *);
         ssize_t (*writev) (struct file *, const struct iovec *, unsigned long,
          loff_t *);
    };

Some operations are not implemented by a driver. For example, a driver that handles a video card won't need
to read from a directory structure. The corresponding entries in the file_operations structure should be set to
NULL.

There is a gcc extension that makes assigning to this structure more convenient. You'll see it in modern
drivers, and may catch you by surprise. This is what the new way of assigning to the structure looks like:

    struct file_operations fops = {
       read: device_read,
       write: device_write,
       open: device_open,
       release: device_release
    };

However, there's also a C99 way of assigning to elements of a structure, and this is definitely preferred over
using the GNU extension. The version of gcc I'm currently using, 2.95, supports the new C99 syntax. You
should use this syntax in case someone wants to port your driver. It will help with compatibility:
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    struct file_operations fops = {
       .read = device_read,
       .write = device_write,
       .open = device_open,
       .release = device_release
    };

The meaning is clear, and you should be aware that any member of the structure which you don't explicitly
assign will be initialized to NULL by gcc.

A pointer to a struct file_operations is commonly named fops.

4.1.2. The file structure

Each device is represented in the kernel by a file structure, which is defined in linux/fs.h. Be aware that a
file is a kernel level structure and never appears in a user space program. It's not the same thing as a FILE,
which is defined by glibc and would never appear in a kernel space function. Also, its name is a bit
misleading; it represents an abstract open `file', not a file on a disk, which is represented by a structure named
inode.

A pointer to a struct file is commonly named filp. You'll also see it refered to as struct file
file. Resist the temptation.

Go ahead and look at the definition of file. Most of the entries you see, like struct dentry aren't used
by device drivers, and you can ignore them. This is because drivers don't fill file directly; they only use
structures contained in file which are created elsewhere.

4.1.3. Registering A Device

As discussed earlier, char devices are accessed through device files, usually located in /dev[6]. The major
number tells you which driver handles which device file. The minor number is used only by the driver itself to
differentiate which device it's operating on, just in case the driver handles more than one device.

Adding a driver to your system means registering it with the kernel. This is synonymous with assigning it a
major number during the module's initialization. You do this by using the register_chrdev function,
defined by linux/fs.h.

    int register_chrdev(unsigned int major, const char *name,
       struct file_operations *fops); 

where unsigned int major is the major number you want to request, const char *name is the
name of the device as it'll appear in /proc/devices and struct file_operations *fops is a
pointer to the file_operations table for your driver. A negative return value means the registertration
failed. Note that we didn't pass the minor number to register_chrdev. That's because the kernel doesn't
care about the minor number; only our driver uses it.

Now the question is, how do you get a major number without hijacking one that's already in use? The easiest
way would be to look through Documentation/devices.txt and pick an unused one. That's a bad way
of doing things because you'll never be sure if the number you picked will be assigned later. The answer is
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that you can ask the kernel to assign you a dynamic major number.

If you pass a major number of 0 to register_chrdev, the return value will be the dynamically allocated
major number. The downside is that you can't make a device file in advance, since you don't know what the
major number will be. There are a couple of ways to do this. First, the driver itself can print the newly
assigned number and we can make the device file by hand. Second, the newly registered device will have an
entry in /proc/devices, and we can either make the device file by hand or write a shell script to read the
file in and make the device file. The third method is we can have our driver make the the device file using the
mknod system call after a successful registration and rm during the call to cleanup_module.

4.1.4. Unregistering A Device

We can't allow the kernel module to be rmmod'ed whenever root feels like it. If the device file is opened by a
process and then we remove the kernel module, using the file would cause a call to the memory location
where the appropriate function (read/write) used to be. If we're lucky, no other code was loaded there, and
we'll get an ugly error message. If we're unlucky, another kernel module was loaded into the same location,
which means a jump into the middle of another function within the kernel. The results of this would be
impossible to predict, but they can't be very positive.

Normally, when you don't want to allow something, you return an error code (a negative number) from the
function which is supposed to do it. With cleanup_module that's impossible because it's a void function.
However, there's a counter which keeps track of how many processes are using your module. You can see
what it's value is by looking at the 3rd field of /proc/modules. If this number isn't zero, rmmod will fail.
Note that you don't have to check the counter from within cleanup_module because the check will be
performed for you by the system call sys_delete_module, defined in linux/module.c. You
shouldn't use this counter directly, but there are macros defined in linux/modules.h which let you
increase, decrease and display this counter:

MOD_INC_USE_COUNT: Increment the use count.• 
MOD_DEC_USE_COUNT: Decrement the use count.• 
MOD_IN_USE: Display the use count.• 

It's important to keep the counter accurate; if you ever do lose track of the correct usage count, you'll never be
able to unload the module; it's now reboot time, boys and girls. This is bound to happen to you sooner or later
during a module's development.

4.1.5. chardev.c

The next code sample creates a char driver named chardev. You can cat its device file (or open the file
with a program) and the driver will put the number of times the device file has been read from into the file.
We don't support writing to the file (like echo "hi" > /dev/hello), but catch these attempts and tell the user
that the operation isn't supported. Don't worry if you don't see what we do with the data we read into the
buffer; we don't do much with it. We simply read in the data and print a message acknowledging that we
received it.

Example 4−1. chardev.c

/*  chardev.c: Creates a read−only char device that says how many times
 *  you've read from the dev file
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 */

        #if defined(CONFIG_MODVERSIONS) && ! defined(MODVERSIONS)
           #include <linux/modversions.h>
           #define MODVERSIONS
        #endif
        #include <linux/kernel.h>
        #include <linux/module.h>
        #include <linux/fs.h>
        #include <asm/uaccess.h>  /* for put_user */

        /*  Prototypes − this would normally go in a .h file
         */
        int init_module(void);
        void cleanup_module(void);
        static int device_open(struct inode *, struct file *);
        static int device_release(struct inode *, struct file *);
        static ssize_t device_read(struct file *, char *, size_t, loff_t *);
        static ssize_t device_write(struct file *, const char *, size_t, loff_t *);

        #define SUCCESS 0
        #define DEVICE_NAME "chardev" /* Dev name as it appears in /proc/devices   */
        #define BUF_LEN 80            /* Max length of the message from the device */

        /* Global variables are declared as static, so are global within the file. */

        static int Major;            /* Major number assigned to our device driver */
        static int Device_Open = 0;  /* Is device open?  Used to prevent multiple  */
                                        access to the device                       */
        static char msg[BUF_LEN];    /* The msg the device will give when asked    */
        static char *msg_Ptr;

        static struct file_operations fops = {
          .read = device_read, 
          .write = device_write,
          .open = device_open,
          .release = device_release
        };

        /*                   Functions
         */

        int init_module(void)
        {
           Major = register_chrdev(0, DEVICE_NAME, &fops);

           if (Major < 0) {
             printk ("Registering the character device failed with %d\n", Major);
             return Major;
           }

           printk("<1>I was assigned major number %d.  To talk to\n", Major);
           printk("<1>the driver, create a dev file with\n");
                 printk("'mknod /dev/hello c %d 0'.\n", Major);
           printk("<1>Try various minor numbers.  Try to cat and echo to\n");
                 printk("the device file.\n");
           printk("<1>Remove the device file and module when done.\n");

           return 0;
        }
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        void cleanup_module(void)
        {
           /* Unregister the device */
           int ret = unregister_chrdev(Major, DEVICE_NAME);
           if (ret < 0) printk("Error in unregister_chrdev: %d\n", ret);
        }  

        /*                   Methods
         */

        /* Called when a process tries to open the device file, like
         * "cat /dev/mycharfile"
         */
        static int device_open(struct inode *inode, struct file *file)
        {
           static int counter = 0;
           if (Device_Open) return −EBUSY;
           Device_Open++;
           sprintf(msg,"I already told you %d times Hello world!\n", counter++");
           msg_Ptr = msg;
           MOD_INC_USE_COUNT;

          return SUCCESS;
        }

        /* Called when a process closes the device file.
         */
        static int device_release(struct inode *inode, struct file *file)
        {
           Device_Open −−;     /* We're now ready for our next caller */

           /* Decrement the usage count, or else once you opened the file, you'll
                    never get get rid of the module. */
           MOD_DEC_USE_COUNT;

           return 0;
        }

        /* Called when a process, which already opened the dev file, attempts to
           read from it.
        */
        static ssize_t device_read(struct file *filp,
           char *buffer,    /* The buffer to fill with data */
           size_t length,   /* The length of the buffer     */
           loff_t *offset)  /* Our offset in the file       */
        {
           /* Number of bytes actually written to the buffer */
           int bytes_read = 0;

           /* If we're at the end of the message, return 0 signifying end of file */
           if (*msg_Ptr == 0) return 0;

           /* Actually put the data into the buffer */
           while (length && *msg_Ptr)  {

                /* The buffer is in the user data segment, not the kernel segment;
                 * assignment won't work.  We have to use put_user which copies data from
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                 * the kernel data segment to the user data segment. */
              put_user(*(msg_Ptr++), buffer++);

              length−−;
              bytes_read++;
           }

           /* Most read functions return the number of bytes put into the buffer */
           return bytes_read;
        }

        /*  Called when a process writes to dev file: echo "hi" > /dev/hello */
        static ssize_t device_write(struct file *filp,
           const char *buff,
                 size_t len,
                 loff_t *off)
        {
           printk ("<1>Sorry, this operation isn't supported.\n");
           return −EINVAL;
        }

4.1.6. Writing Modules for Multiple Kernel Versions

The system calls, which are the major interface the kernel shows to the processes, generally stay the same
across versions. A new system call may be added, but usually the old ones will behave exactly like they used
to. This is necessary for backward compatibility −− a new kernel version is not supposed to break regular
processes. In most cases, the device files will also remain the same. On the other hand, the internal interfaces
within the kernel can and do change between versions.

The Linux kernel versions are divided between the stable versions (n.$<$even number$>$.m) and the
development versions (n.$<$odd number$>$.m). The development versions include all the cool new ideas,
including those which will be considered a mistake, or reimplemented, in the next version. As a result, you
can't trust the interface to remain the same in those versions (which is why I don't bother to support them in
this book, it's too much work and it would become dated too quickly). In the stable versions, on the other
hand, we can expect the interface to remain the same regardless of the bug fix version (the m number).

There are differences between different kernel versions, and if you want to support multiple kernel versions,
you'll find yourself having to code conditional compilation directives. The way to do this to compare the
macro LINUX_VERSION_CODE to the macro KERNEL_VERSION. In version a.b.c of the kernel, the
value of this macro would be $2^{16}a+2^{8}b+c$. Be aware that this macro is not defined for kernel 2.0.35
and earlier, so if you want to write modules that support really old kernels, you'll have to define it yourself,
like:

Example 4−2. some title

    #if LINUX_KERNEL_VERSION >= KERNEL_VERSION(2,2,0)
        #define KERNEL_VERSION(a,b,c) ((a)*65536+(b)*256+(c))
    #endif

Of course since these are macros, you can also use #ifndef KERNEL_VERSION to test the existence of the
macro, rather than testing the version of the kernel.
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Chapter 5. The /proc File System

5.1. The /proc File System

In Linux there is an additional mechanism for the kernel and kernel modules to send information to processes
−−− the /proc file system. Originally designed to allow easy access to information about processes (hence
the name), it is now used by every bit of the kernel which has something interesting to report, such as
/proc/modules which has the list of modules and /proc/meminfo which has memory usage statistics.

The method to use the proc file system is very similar to the one used with device drivers −−− you create a
structure with all the information needed for the /proc file, including pointers to any handler functions (in
our case there is only one, the one called when somebody attempts to read from the /proc file). Then,
init_module registers the structure with the kernel and cleanup_module unregisters it.

The reason we use proc_register_dynamic[7] is because we don't want to determine the inode number
used for our file in advance, but to allow the kernel to determine it to prevent clashes. Normal file systems are
located on a disk, rather than just in memory (which is where /proc is), and in that case the inode number is
a pointer to a disk location where the file's index−node (inode for short) is located. The inode contains
information about the file, for example the file's permissions, together with a pointer to the disk location or
locations where the file's data can be found.

Because we don't get called when the file is opened or closed, there's no where for us to put
MOD_INC_USE_COUNT and MOD_DEC_USE_COUNT in this module, and if the file is opened and then the
module is removed, there's no way to avoid the consequences. In the next chapter we'll see a harder to
implement, but more flexible, way of dealing with /proc files which will allow us to protect against this
problem as well.

Example 5−1. procfs.c

/*  procfs.c −  create a "file" in /proc 
 */

#include <linux/kernel.h>   /* We're doing kernel work */
#include <linux/module.h>   /* Specifically, a module */

/* Deal with CONFIG_MODVERSIONS */
#if CONFIG_MODVERSIONS==1
#define MODVERSIONS
#include <linux/modversions.h>
#endif        

/* Necessary because we use the proc fs */
#include <linux/proc_fs.h>

/* In 2.2.3 /usr/include/linux/version.h includes a 
 * macro for this, but 2.0.35 doesn't − so I add it 
 * here if necessary. */
#ifndef KERNEL_VERSION
#define KERNEL_VERSION(a,b,c) ((a)*65536+(b)*256+(c))
#endif
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/* Put data into the proc fs file.

   Arguments
   =========
   1. The buffer where the data is to be inserted, if 
      you decide to use it.
   2. A pointer to a pointer to characters. This is 
      useful if you don't want to use the buffer 
      allocated by the kernel.
   3. The current position in the file. 
   4. The size of the buffer in the first argument.  
   5. Zero (for future use?).

   Usage and Return Value
   ======================
   If you use your own buffer, like I do, put its 
   location in the second argument and return the 
   number of bytes used in the buffer.

   A return value of zero means you have no further 
   information at this time (end of file). A negative 
   return value is an error condition.

   For More Information
   ==================== 
   The way I discovered what to do with this function 
   wasn't by reading documentation, but by reading the 
   code which used it. I just looked to see what uses 
   the get_info field of proc_dir_entry struct (I used a 
   combination of find and grep, if you're interested), 
   and I saw that  it is used in <kernel source 
   directory>/fs/proc/array.c.

   If something is unknown about the kernel, this is 
   usually the way to go. In Linux we have the great 
   advantage of having the kernel source code for 
   free − use it.
 */
int procfile_read(char *buffer, 
                  char **buffer_location, 
                  off_t offset, 
                  int buffer_length, 
                  int zero)
{
  int len;  /* The number of bytes actually used */

  /* This is static so it will still be in memory 
   * when we leave this function */
  static char my_buffer[80];  

  static int count = 1;

  /* We give all of our information in one go, so if the 
   * user asks us if we have more information the 
   * answer should always be no. 
   *
   * This is important because the standard read 
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   * function from the library would continue to issue 
   * the read system call until the kernel replies
   * that it has no more information, or until its 
   * buffer is filled.
   */
  if (offset > 0)
    return 0;

  /* Fill the buffer and get its length */
  len = sprintf(my_buffer, 
    "For the %d%s time, go away!\n", count,
    (count % 100 > 10 && count % 100 < 14) ? "th" : 
      (count % 10 == 1) ? "st" :
        (count % 10 == 2) ? "nd" :
          (count % 10 == 3) ? "rd" : "th" );
  count++;

  /* Tell the function which called us where the 
   * buffer is */
  *buffer_location = my_buffer;

  /* Return the length */
  return len;
}

struct proc_dir_entry Our_Proc_File = 
  {
    0, /* Inode number − ignore, it will be filled by 
        * proc_register[_dynamic] */
    4, /* Length of the file name */
    "test", /* The file name */
    S_IFREG | S_IRUGO, /* File mode − this is a regular 
                        * file which can be read by its 
                        * owner, its group, and everybody
                        * else */
    1,  /* Number of links (directories where the 
         * file is referenced) */
    0, 0,  /* The uid and gid for the file − we give it 
            * to root */
    80, /* The size of the file reported by ls. */
    NULL, /* functions which can be done on the inode 
           * (linking, removing, etc.) − we don't 
           * support any. */
    procfile_read, /* The read function for this file, 
                    * the function called when somebody 
                    * tries to read something from it. */
    NULL /* We could have here a function to fill the 
          * file's inode, to enable us to play with 
          * permissions, ownership, etc. */
  }; 

/* Initialize the module − register the proc file */
int init_module()
{
  /* Success if proc_register[_dynamic] is a success, 
   * failure otherwise. */
#if LINUX_VERSION_CODE > KERNEL_VERSION(2,2,0)
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  /* In version 2.2, proc_register assign a dynamic 
   * inode number automatically if it is zero in the 
   * structure , so there's no more need for 
   * proc_register_dynamic
   */
  return proc_register(&proc_root, &Our_Proc_File);
#else
  return proc_register_dynamic(&proc_root, &Our_Proc_File);
#endif

  /* proc_root is the root directory for the proc 
   * fs (/proc). This is where we want our file to be 
   * located. 
   */
}

/* Cleanup − unregister our file from /proc */
void cleanup_module()
{
  proc_unregister(&proc_root, Our_Proc_File.low_ino);
}  
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Chapter 6. Using /proc For Input

6.1. Using /proc For Input

So far we have two ways to generate output from kernel modules: we can register a device driver and mknod
a device file, or we can create a /proc file. This allows the kernel module to tell us anything it likes. The
only problem is that there is no way for us to talk back. The first way we'll send input to kernel modules will
be by writing back to the /proc file.

Because the proc filesystem was written mainly to allow the kernel to report its situation to processes, there
are no special provisions for input. The struct proc_dir_entry doesn't include a pointer to an input
function, the way it includes a pointer to an output function. Instead, to write into a /proc file, we need to
use the standard filesystem mechanism.

In Linux there is a standard mechanism for file system registration. Since every file system has to have its
own functions to handle inode and file operations[8], there is a special structure to hold pointers to all those
functions, struct inode_operations, which includes a pointer to struct file_operations. In
/proc, whenever we register a new file, we're allowed to specify which struct inode_operations will
be used for access to it. This is the mechanism we use, a struct inode_operations which includes a
pointer to a struct file_operations which includes pointers to our module_input and
module_output functions.

It's important to note that the standard roles of read and write are reversed in the kernel. Read functions are
used for output, whereas write functions are used for input. The reason for that is that read and write refer to
the user's point of view −−− if a process reads something from the kernel, then the kernel needs to output it,
and if a process writes something to the kernel, then the kernel receives it as input.

Another interesting point here is the module_permission function. This function is called whenever a
process tries to do something with the /proc file, and it can decide whether to allow access or not. Right
now it is only based on the operation and the uid of the current user (as available in current, a pointer to a
structure which includes information on the currently running process), but it could be based on anything we
like, such as what other processes are doing with the same file, the time of day, or the last input we received.

The reason for put_user and get_user is that Linux memory (under Intel architecture, it may be
different under some other processors) is segmented. This means that a pointer, by itself, does not reference a
unique location in memory, only a location in a memory segment, and you need to know which memory
segment it is to be able to use it. There is one memory segment for the kernel, and one of each of the
processes.

The only memory segment accessible to a process is its own, so when writing regular programs to run as
processes, there's no need to worry about segments. When you write a kernel module, normally you want to
access the kernel memory segment, which is handled automatically by the system. However, when the content
of a memory buffer needs to be passed between the currently running process and the kernel, the kernel
function receives a pointer to the memory buffer which is in the process segment. The put_user and
get_user macros allow you to access that memory.

Example 6−1. procfs.c
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/*  procfs.c −  create a "file" in /proc, which allows both input and output.
 */

#include <linux/kernel.h>   /* We're doing kernel work */
#include <linux/module.h>   /* Specifically, a module */

/* Necessary because we use proc fs */
#include <linux/proc_fs.h>

/* In 2.2.3 /usr/include/linux/version.h includes a 
 * macro for this, but 2.0.35 doesn't − so I add it 
 * here if necessary. */
#ifndef KERNEL_VERSION
#define KERNEL_VERSION(a,b,c) ((a)*65536+(b)*256+(c))
#endif

#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,2,0)
#include <asm/uaccess.h>  /* for get_user and put_user */
#endif

/* The module's file functions ********************** */

/* Here we keep the last message received, to prove 
 * that we can process our input */
#define MESSAGE_LENGTH 80
static char Message[MESSAGE_LENGTH];

/* Since we use the file operations struct, we can't 
 * use the special proc output provisions − we have to 
 * use a standard read function, which is this function */
#if LINUX_VERSION_CODE &gt;= KERNEL_VERSION(2,2,0)
static ssize_t module_output(
    struct file *file,   /* The file read */
    char *buf, /* The buffer to put data to (in the
                * user segment) */
    size_t len,  /* The length of the buffer */
    loff_t *offset) /* Offset in the file − ignore */
#else
static int module_output(
    struct inode *inode, /* The inode read */
    struct file *file,   /* The file read */
    char *buf, /* The buffer to put data to (in the
                * user segment) */
    int len)  /* The length of the buffer */
#endif
{
  static int finished = 0;
  int i;
  char message[MESSAGE_LENGTH+30];

  /* We return 0 to indicate end of file, that we have 
   * no more information. Otherwise, processes will 
   * continue to read from us in an endless loop. */
  if (finished) {
    finished = 0;
    return 0;
  }
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  /* We use put_user to copy the string from the kernel's 
   * memory segment to the memory segment of the process 
   * that called us. get_user, BTW, is
   * used for the reverse. */
  sprintf(message, "Last input:%s", Message);
  for(i=0; i&lt;len && message[i]; i++) 
    put_user(message[i], buf+i);

  /* Notice, we assume here that the size of the message 
   * is below len, or it will be received cut. In a real 
   * life situation, if the size of the message is less 
   * than len then we'd return len and on the second call 
   * start filling the buffer with the len+1'th byte of 
   * the message. */
  finished = 1; 

  return i;  /* Return the number of bytes "read" */
}

/* This function receives input from the user when the 
 * user writes to the /proc file. */
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,2,0)
static ssize_t module_input(
    struct file *file,   /* The file itself */
    const char *buf,     /* The buffer with input */
    size_t length,       /* The buffer's length */
    loff_t *offset)      /* offset to file − ignore */
#else
static int module_input(
    struct inode *inode, /* The file's inode */
    struct file *file,   /* The file itself */
    const char *buf,     /* The buffer with the input */
    int length)          /* The buffer's length */
#endif
{
  int i;

  /* Put the input into Message, where module_output 
   * will later be able to use it */
  for(i=0; i<MESSAGE_LENGTH−1 && i<length; i++)
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,2,0)
    get_user(Message[i], buf+i);
  /* In version 2.2 the semantics of get_user changed, 
   * it not longer returns a character, but expects a 
   * variable to fill up as its first argument and a 
   * user segment pointer to fill it from as the its 
   * second.
   *
   * The reason for this change is that the version 2.2 
   * get_user can also read an short or an int. The way 
   * it knows the type of the variable it should read 
   * is by using sizeof, and for that it needs the 
   * variable itself.
   */ 
#else 
    Message[i] = get_user(buf+i);
#endif
  Message[i] = '\0';  /* we want a standard, zero 
                       * terminated string */
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  /* We need to return the number of input characters 
   * used */
  return i;
}

/* This function decides whether to allow an operation 
 * (return zero) or not allow it (return a non−zero 
 * which indicates why it is not allowed).
 *
 * The operation can be one of the following values:
 * 0 − Execute (run the "file" − meaningless in our case)
 * 2 − Write (input to the kernel module)
 * 4 − Read (output from the kernel module)
 *
 * This is the real function that checks file 
 * permissions. The permissions returned by ls −l are 
 * for referece only, and can be overridden here. 
 */
static int module_permission(struct inode *inode, int op)
{
  /* We allow everybody to read from our module, but 
   * only root (uid 0) may write to it */ 
  if (op == 4 || (op == 2 && current−>euid == 0))
    return 0; 

  /* If it's anything else, access is denied */
  return −EACCES;
}

/* The file is opened − we don't really care about 
 * that, but it does mean we need to increment the 
 * module's reference count. */
int module_open(struct inode *inode, struct file *file)
{
  MOD_INC_USE_COUNT;

  return 0;
}

/* The file is closed − again, interesting only because 
 * of the reference count. */
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,2,0)
int module_close(struct inode *inode, struct file *file)
#else
void module_close(struct inode *inode, struct file *file)
#endif
{
  MOD_DEC_USE_COUNT;

#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,2,0)
  return 0;  /* success */
#endif
}
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/* Structures to register as the /proc file, with 
 * pointers to all the relevant functions. ********** */

/* File operations for our proc file. This is where we 
 * place pointers to all the functions called when 
 * somebody tries to do something to our file. NULL 
 * means we don't want to deal with something. */
static struct file_operations File_Ops_4_Our_Proc_File =
  {
    NULL,  /* lseek */
    module_output,  /* "read" from the file */
    module_input,   /* "write" to the file */
    NULL,  /* readdir */
    NULL,  /* select */
    NULL,  /* ioctl */
    NULL,  /* mmap */
    module_open,    /* Somebody opened the file */
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,2,0)
    NULL,   /* flush, added here in version 2.2 */
#endif
    module_close,    /* Somebody closed the file */
    /* etc. etc. etc. (they are all given in 
     * /usr/include/linux/fs.h). Since we don't put 
     * anything here, the system will keep the default
     * data, which in Unix is zeros (NULLs when taken as 
     * pointers). */
  };

/* Inode operations for our proc file. We need it so 
 * we'll have some place to specify the file operations 
 * structure we want to use, and the function we use for 
 * permissions. It's also possible to specify functions 
 * to be called for anything else which could be done to 
 * an inode (although we don't bother, we just put 
 * NULL). */
static struct inode_operations Inode_Ops_4_Our_Proc_File =
  {
    &File_Ops_4_Our_Proc_File,
    NULL, /* create */
    NULL, /* lookup */
    NULL, /* link */
    NULL, /* unlink */
    NULL, /* symlink */
    NULL, /* mkdir */
    NULL, /* rmdir */
    NULL, /* mknod */
    NULL, /* rename */
    NULL, /* readlink */
    NULL, /* follow_link */
    NULL, /* readpage */
    NULL, /* writepage */
    NULL, /* bmap */
    NULL, /* truncate */
    module_permission /* check for permissions */
  };

/* Directory entry */
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static struct proc_dir_entry Our_Proc_File = 
  {
    0, /* Inode number − ignore, it will be filled by 
        * proc_register[_dynamic] */
    7, /* Length of the file name */
    "rw_test", /* The file name */
    S_IFREG | S_IRUGO | S_IWUSR, 
    /* File mode − this is a regular file which 
     * can be read by its owner, its group, and everybody
     * else. Also, its owner can write to it.
     *
     * Actually, this field is just for reference, it's
     * module_permission that does the actual check. It 
     * could use this field, but in our implementation it
     * doesn't, for simplicity. */
    1,  /* Number of links (directories where the 
         * file is referenced) */
    0, 0,  /* The uid and gid for the file − 
            * we give it to root */
    80, /* The size of the file reported by ls. */
    &Inode_Ops_4_Our_Proc_File, 
    /* A pointer to the inode structure for
     * the file, if we need it. In our case we
     * do, because we need a write function. */
    NULL  
    /* The read function for the file. Irrelevant, 
     * because we put it in the inode structure above */
  }; 

/* Module initialization and cleanup ******************* */

/* Initialize the module − register the proc file */
int init_module()
{
  /* Success if proc_register[_dynamic] is a success, 
   * failure otherwise */
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,2,0)
  /* In version 2.2, proc_register assign a dynamic 
   * inode number automatically if it is zero in the 
   * structure , so there's no more need for 
   * proc_register_dynamic
   */
  return proc_register(&proc_root, &Our_Proc_File);
#else
  return proc_register_dynamic(&proc_root, &Our_Proc_File);
#endif
}

/* Cleanup − unregister our file from /proc */
void cleanup_module()
{
  proc_unregister(&proc_root, Our_Proc_File.low_ino);
}  
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Chapter 7. Talking To Device Files

7.1. Talking to Device Files (writes and IOCTLs)}

Device files are supposed to represent physical devices. Most physical devices are used for output as well as
input, so there has to be some mechanism for device drivers in the kernel to get the output to send to the
device from processes. This is done by opening the device file for output and writing to it, just like writing to
a file. In the following example, this is implemented by device_write.

This is not always enough. Imagine you had a serial port connected to a modem (even if you have an internal
modem, it is still implemented from the CPU's perspective as a serial port connected to a modem, so you don't
have to tax your imagination too hard). The natural thing to do would be to use the device file to write things
to the modem (either modem commands or data to be sent through the phone line) and read things from the
modem (either responses for commands or the data received through the phone line). However, this leaves
open the question of what to do when you need to talk to the serial port itself, for example to send the rate at
which data is sent and received.

The answer in Unix is to use a special function called ioctl (short for Input Output ConTroL). Every device
can have its own ioctl commands, which can be read ioctl's (to send information from a process to the
kernel), write ioctl's (to return information to a process), [9] both or neither. The ioctl function is called
with three parameters: the file descriptor of the appropriate device file, the ioctl number, and a parameter,
which is of type long so you can use a cast to use it to pass anything. [10]

The ioctl number encodes the major device number, the type of the ioctl, the command, and the type of the
parameter. This ioctl number is usually created by a macro call (_IO, _IOR, _IOW or _IOWR −−− depending
on the type) in a header file. This header file should then be included both by the programs which will use
ioctl (so they can generate the appropriate ioctl's) and by the kernel module (so it can understand it). In
the example below, the header file is chardev.h and the program which uses it is ioctl.c.

If you want to use ioctls in your own kernel modules, it is best to receive an official ioctl assignment, so
if you accidentally get somebody else's ioctls, or if they get yours, you'll know something is wrong. For
more information, consult the kernel source tree at Documentation/ioctl−number.txt.

Example 7−1. chardev.c

/*  chardev.c − Create an input/output character device
 */

#include <linux/kernel.h>   /* We're doing kernel work */
#include <linux/module.h>   /* Specifically, a module */

/* Deal with CONFIG_MODVERSIONS */
#if CONFIG_MODVERSIONS==1
#define MODVERSIONS
#include <linux/modversions.h>
#endif        

/* For character devices */

/* The character device definitions are here */
#include <linux/fs.h>
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/* A wrapper which does next to nothing at
 * at present, but may help for compatibility
 * with future versions of Linux */
#include <linux/wrapper.h>

/* Our own ioctl numbers */
#include "chardev.h"

/* In 2.2.3 /usr/include/linux/version.h includes a 
 * macro for this, but 2.0.35 doesn't − so I add it 
 * here if necessary. */
#ifndef KERNEL_VERSION
#define KERNEL_VERSION(a,b,c) ((a)*65536+(b)*256+(c))
#endif

#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,2,0)
#include <asm/uaccess.h>  /* for get_user and put_user */
#endif

#define SUCCESS 0

/* Device Declarations ******************************** */

/* The name for our device, as it will appear in 
 * /proc/devices */
#define DEVICE_NAME "char_dev"

/* The maximum length of the message for the device */
#define BUF_LEN 80

/* Is the device open right now? Used to prevent 
 * concurent access into the same device */
static int Device_Open = 0;

/* The message the device will give when asked */
static char Message[BUF_LEN];

/* How far did the process reading the message get? 
 * Useful if the message is larger than the size of the 
 * buffer we get to fill in device_read. */
static char *Message_Ptr;

/* This function is called whenever a process attempts 
 * to open the device file */
static int device_open(struct inode *inode, 
                       struct file *file)
{
#ifdef DEBUG
  printk ("device_open(%p)\n", file);
#endif
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  /* We don't want to talk to two processes at the 
   * same time */
  if (Device_Open)
    return −EBUSY;

  /* If this was a process, we would have had to be 
   * more careful here, because one process might have 
   * checked Device_Open right before the other one 
   * tried to increment it. However, we're in the 
   * kernel, so we're protected against context switches.
   *
   * This is NOT the right attitude to take, because we
   * might be running on an SMP box, but we'll deal with
   * SMP in a later chapter.
   */ 

  Device_Open++;

  /* Initialize the message */
  Message_Ptr = Message;

  MOD_INC_USE_COUNT;

  return SUCCESS;
}

/* This function is called when a process closes the 
 * device file. It doesn't have a return value because 
 * it cannot fail. Regardless of what else happens, you 
 * should always be able to close a device (in 2.0, a 2.2
 * device file could be impossible to close).
 */
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,2,0)
static int device_release(struct inode *inode, 
                          struct file *file)
#else
static void device_release(struct inode *inode, 
                           struct file *file)
#endif
{
#ifdef DEBUG
  printk ("device_release(%p,%p)\n", inode, file);
#endif

  /* We're now ready for our next caller */
  Device_Open −−;

  MOD_DEC_USE_COUNT;

#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,2,0)
  return 0;
#endif
}

/* This function is called whenever a process which 
 * has already opened the device file attempts to 
 * read from it. */
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,2,0)
static ssize_t device_read(
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    struct file *file,
    char *buffer, /* The buffer to fill with the data */   
    size_t length,     /* The length of the buffer */
    loff_t *offset) /* offset to the file */
#else
static int device_read(
    struct inode *inode,
    struct file *file,
    char *buffer,   /* The buffer to fill with the data */ 
    int length)     /* The length of the buffer 
                     * (mustn't write beyond that!) */
#endif
{
  /* Number of bytes actually written to the buffer */
  int bytes_read = 0;

#ifdef DEBUG
  printk("device_read(%p,%p,%d)\n", file, buffer, length);
#endif

  /* If we're at the end of the message, return 0 
   * (which signifies end of file) */
  if (*Message_Ptr == 0)
    return 0;

  /* Actually put the data into the buffer */
  while (length && *Message_Ptr)  {

    /* Because the buffer is in the user data segment, 
     * not the kernel data segment, assignment wouldn't 
     * work. Instead, we have to use put_user which 
     * copies data from the kernel data segment to the 
     * user data segment. */
    put_user(*(Message_Ptr++), buffer++);
    length −−;
    bytes_read ++;
  }

#ifdef DEBUG
   printk ("Read %d bytes, %d left\n", bytes_read, length);
#endif

   /* Read functions are supposed to return the number 
    * of bytes actually inserted into the buffer */
  return bytes_read;
}

/* This function is called when somebody tries to 
 * write into our device file. */ 
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,2,0)
static ssize_t device_write(struct file *file,
                            const char *buffer,
                            size_t length,
                            loff_t *offset)
#else
static int device_write(struct inode *inode,
                        struct file *file,
                        const char *buffer,
                        int length)
#endif
{
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  int i;

#ifdef DEBUG
  printk ("device_write(%p,%s,%d)",
    file, buffer, length);
#endif

  for(i=0; i<length && i<BUF_LEN; i++)
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,2,0)
    get_user(Message[i], buffer+i);
#else
    Message[i] = get_user(buffer+i);
#endif  

  Message_Ptr = Message;

  /* Again, return the number of input characters used */
  return i;
}

/* This function is called whenever a process tries to 
 * do an ioctl on our device file. We get two extra 
 * parameters (additional to the inode and file 
 * structures, which all device functions get): the number
 * of the ioctl called and the parameter given to the 
 * ioctl function.
 *
 * If the ioctl is write or read/write (meaning output 
 * is returned to the calling process), the ioctl call 
 * returns the output of this function.
 */
int device_ioctl(
    struct inode *inode,
    struct file *file,
    unsigned int ioctl_num,/* The number of the ioctl */
    unsigned long ioctl_param) /* The parameter to it */
{
  int i;
  char *temp;
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,2,0)
  char ch;
#endif

  /* Switch according to the ioctl called */
  switch (ioctl_num) {
    case IOCTL_SET_MSG:
      /* Receive a pointer to a message (in user space) 
       * and set that to be the device's message. */ 

      /* Get the parameter given to ioctl by the process */
      temp = (char *) ioctl_param;

      /* Find the length of the message */
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,2,0)
      get_user(ch, temp);
      for (i=0; ch && i<BUF_LEN; i++, temp++)
        get_user(ch, temp);
#else
      for (i=0; get_user(temp) && i<BUF_LEN; i++, temp++)
        ;
#endif
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      /* Don't reinvent the wheel − call device_write */
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,2,0)
      device_write(file, (char *) ioctl_param, i, 0);
#else
      device_write(inode, file, (char *) ioctl_param, i);
#endif
      break;

    case IOCTL_GET_MSG:
      /* Give the current message to the calling 
       * process − the parameter we got is a pointer, 
       * fill it. */
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,2,0)
      i = device_read(file, (char *) ioctl_param, 99, 0); 
#else
      i = device_read(inode, file, (char *) ioctl_param, 99); 
#endif
      /* Warning − we assume here the buffer length is 
       * 100. If it's less than that we might overflow 
       * the buffer, causing the process to core dump. 
       *
       * The reason we only allow up to 99 characters is 
       * that the NULL which terminates the string also 
       * needs room. */

      /* Put a zero at the end of the buffer, so it 
       * will be properly terminated */
      put_user('\0', (char *) ioctl_param+i);
      break;

    case IOCTL_GET_NTH_BYTE:
      /* This ioctl is both input (ioctl_param) and 
       * output (the return value of this function) */
      return Message[ioctl_param];
      break;
  }

  return SUCCESS;
}

/* Module Declarations *************************** */

/* This structure will hold the functions to be called 
 * when a process does something to the device we 
 * created. Since a pointer to this structure is kept in 
 * the devices table, it can't be local to
 * init_module. NULL is for unimplemented functions. */
struct file_operations Fops = {
  NULL,   /* seek */
  device_read, 
  device_write,
  NULL,   /* readdir */
  NULL,   /* select */
  device_ioctl,   /* ioctl */
  NULL,   /* mmap */
  device_open,
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,2,0)
  NULL,  /* flush */
#endif
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  device_release  /* a.k.a. close */
};

/* Initialize the module − Register the character device */
int init_module()
{
  int ret_val;

  /* Register the character device (atleast try) */
  ret_val = module_register_chrdev(MAJOR_NUM, 
                                 DEVICE_NAME,
                                 &Fops);

  /* Negative values signify an error */
  if (ret_val < 0) {
    printk ("%s failed with %d\n",
            "Sorry, registering the character device ",
            ret_val);
    return ret_val;
  }

  printk ("%s The major device number is %d.\n",
          "Registeration is a success", 
          MAJOR_NUM);
  printk ("If you want to talk to the device driver,\n");
  printk ("you'll have to create a device file. \n");
  printk ("We suggest you use:\n");
  printk ("mknod %s c %d 0\n", DEVICE_FILE_NAME, 
          MAJOR_NUM);
  printk ("The device file name is important, because\n");
  printk ("the ioctl program assumes that's the\n");
  printk ("file you'll use.\n");

  return 0;
}

/* Cleanup − unregister the appropriate file from /proc */
void cleanup_module()
{
  int ret;

  /* Unregister the device */
  ret = module_unregister_chrdev(MAJOR_NUM, DEVICE_NAME);

  /* If there's an error, report it */ 
  if (ret < 0)
    printk("Error in module_unregister_chrdev: %d\n", ret);
}  

Example 7−2. chardev.h

/*  chardev.h − the header file with the ioctl definitions.
 *
 *  The declarations here have to be in a header file, because
 *  they need to be known both to the kernel module
 *  (in chardev.c) and the process calling ioctl (ioctl.c)
 */
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#ifndef CHARDEV_H
#define CHARDEV_H

#include <linux/ioctl.h>

/* The major device number. We can't rely on dynamic 
 * registration any more, because ioctls need to know 
 * it. */
#define MAJOR_NUM 100

/* Set the message of the device driver */
#define IOCTL_SET_MSG _IOR(MAJOR_NUM, 0, char *)
/* _IOR means that we're creating an ioctl command 
 * number for passing information from a user process
 * to the kernel module. 
 *
 * The first arguments, MAJOR_NUM, is the major device 
 * number we're using.
 *
 * The second argument is the number of the command 
 * (there could be several with different meanings).
 *
 * The third argument is the type we want to get from 
 * the process to the kernel.
 */

/* Get the message of the device driver */
#define IOCTL_GET_MSG _IOR(MAJOR_NUM, 1, char *)
 /* This IOCTL is used for output, to get the message 
  * of the device driver. However, we still need the 
  * buffer to place the message in to be input, 
  * as it is allocated by the process.
  */

/* Get the n'th byte of the message */
#define IOCTL_GET_NTH_BYTE _IOWR(MAJOR_NUM, 2, int)
 /* The IOCTL is used for both input and output. It 
  * receives from the user a number, n, and returns 
  * Message[n]. */

/* The name of the device file */
#define DEVICE_FILE_NAME "char_dev"

#endif

Example 7−3. ioctl.c

/*  ioctl.c − the process to use ioctl's to control the kernel module
 *
 *  Until now we could have used cat for input and output.  But now
 *  we need to do ioctl's, which require writing our own process. 
 */

/* device specifics, such as ioctl numbers and the 
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 * major device file. */
#include "chardev.h"    

#include <fcntl.h>      /* open */ 
#include <unistd.h>     /* exit */
#include <sys/ioctl.h>  /* ioctl */

/* Functions for the ioctl calls */

ioctl_set_msg(int file_desc, char *message)
{
  int ret_val;

  ret_val = ioctl(file_desc, IOCTL_SET_MSG, message);

  if (ret_val < 0) {
    printf ("ioctl_set_msg failed:%d\n", ret_val);
    exit(−1);
  }
}

ioctl_get_msg(int file_desc)
{
  int ret_val;
  char message[100]; 

  /* Warning − this is dangerous because we don't tell 
   * the kernel how far it's allowed to write, so it 
   * might overflow the buffer. In a real production 
   * program, we would have used two ioctls − one to tell
   * the kernel the buffer length and another to give 
   * it the buffer to fill
   */
  ret_val = ioctl(file_desc, IOCTL_GET_MSG, message);

  if (ret_val < 0) {
    printf ("ioctl_get_msg failed:%d\n", ret_val);
    exit(−1);
  }

  printf("get_msg message:%s\n", message);
}

ioctl_get_nth_byte(int file_desc)
{
  int i;
  char c;

  printf("get_nth_byte message:");

  i = 0;
  while (c != 0) {
    c = ioctl(file_desc, IOCTL_GET_NTH_BYTE, i++);

    if (c < 0) {
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      printf(
      "ioctl_get_nth_byte failed at the %d'th byte:\n", i);
      exit(−1);
    }

    putchar(c);
  } 
  putchar('\n');
}

/* Main − Call the ioctl functions */
main()
{
  int file_desc, ret_val;
  char *msg = "Message passed by ioctl\n";

  file_desc = open(DEVICE_FILE_NAME, 0);
  if (file_desc < 0) {
    printf ("Can't open device file: %s\n", 
            DEVICE_FILE_NAME);
    exit(−1);
  }

  ioctl_get_nth_byte(file_desc);
  ioctl_get_msg(file_desc);
  ioctl_set_msg(file_desc, msg);

  close(file_desc); 
}
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Chapter 8. System Calls

8.1. System Calls

So far, the only thing we've done was to use well defined kernel mechanisms to register /proc files and
device handlers. This is fine if you want to do something the kernel programmers thought you'd want, such as
write a device driver. But what if you want to do something unusual, to change the behavior of the system in
some way? Then, you're mostly on your own.

This is where kernel programming gets dangerous. While writing the example below, I killed the open()
system call. This meant I couldn't open any files, I couldn't run any programs, and I couldn't shutdown the
computer. I had to pull the power switch. Luckily, no files died. To ensure you won't lose any files either,
please run sync right before you do the insmod and the rmmod.

Forget about /proc files, forget about device files. They're just minor details. The real process to kernel
communication mechanism, the one used by all processes, is system calls. When a process requests a service
from the kernel (such as opening a file, forking to a new process, or requesting more memory), this is the
mechanism used. If you want to change the behaviour of the kernel in interesting ways, this is the place to do
it. By the way, if you want to see which system calls a program uses, run strace <arguments>.

In general, a process is not supposed to be able to access the kernel. It can't access kernel memory and it can't
call kernel functions. The hardware of the CPU enforces this (that's the reason why it's called `protected
mode').

System calls are an exception to this general rule. What happens is that the process fills the registers with the
appropriate values and then calls a special instruction which jumps to a previously defined location in the
kernel (of course, that location is readable by user processes, it is not writable by them). Under Intel CPUs,
this is done by means of interrupt 0x80. The hardware knows that once you jump to this location, you are no
longer running in restricted user mode, but as the operating system kernel −−− and therefore you're allowed to
do whatever you want.

The location in the kernel a process can jump to is called system_call. The procedure at that location checks
the system call number, which tells the kernel what service the process requested. Then, it looks at the table of
system calls (sys_call_table) to see the address of the kernel function to call. Then it calls the function,
and after it returns, does a few system checks and then return back to the process (or to a different process, if
the process time ran out). If you want to read this code, it's at the source file
arch/$<$architecture$>$/kernel/entry.S, after the line ENTRY(system_call).

So, if we want to change the way a certain system call works, what we need to do is to write our own function
to implement it (usually by adding a bit of our own code, and then calling the original function) and then
change the pointer at sys_call_table to point to our function. Because we might be removed later and
we don't want to leave the system in an unstable state, it's important for cleanup_module to restore the
table to its original state.

The source code here is an example of such a kernel module. We want to `spy' on a certain user, and to
printk() a message whenever that user opens a file. Towards this end, we replace the system call to open a
file with our own function, called our_sys_open. This function checks the uid (user's id) of the current
process, and if it's equal to the uid we spy on, it calls printk() to display the name of the file to be opened.
Then, either way, it calls the original open() function with the same parameters, to actually open the file.
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The init_module function replaces the appropriate location in sys_call_table and keeps the original
pointer in a variable. The cleanup_module function uses that variable to restore everything back to
normal. This approach is dangerous, because of the possibility of two kernel modules changing the same
system call. Imagine we have two kernel modules, A and B. A's open system call will be A_open and B's will
be B_open. Now, when A is inserted into the kernel, the system call is replaced with A_open, which will call
the original sys_open when it's done. Next, B is inserted into the kernel, which replaces the system call with
B_open, which will call what it thinks is the original system call, A_open, when it's done.

Now, if B is removed first, everything will be well−−−it will simply restore the system call to A_open, which
calls the original. However, if A is removed and then B is removed, the system will crash. A's removal will
restore the system call to the original, sys_open, cutting B out of the loop. Then, when B is removed, it will
restore the system call to what it thinks is the original, A_open, which is no longer in memory. At first glance,
it appears we could solve this particular problem by checking if the system call is equal to our open function
and if so not changing it at all (so that B won't change the system call when it's removed), but that will cause
an even worse problem. When A is removed, it sees that the system call was changed to B_open so that it is
no longer pointing to A_open, so it won't restore it to sys_open before it is removed from memory.
Unfortunately, B_open will still try to call A_open which is no longer there, so that even without removing B
the system would crash.

I can think of two ways to prevent this problem. The first is to restore the call to the original value, sys_open.
Unfortunately, sys_open is not part of the kernel system table in /proc/ksyms, so we can't access it. The
other solution is to use the reference count to prevent root from rmmod'ing the module once it is loaded. This
is good for production modules, but bad for an educational sample −−− which is why I didn't do it here.

Example 8−1. syscall.c

/*  syscall.c 
 * 
 *  System call "stealing" sample.
 */

/* Copyright (C) 2001 by Peter Jay Salzman */

/* The necessary header files */

/* Standard in kernel modules */
#include <linux/kernel.h>   /* We're doing kernel work */
#include <linux/module.h>   /* Specifically, a module */

/* Deal with CONFIG_MODVERSIONS */
#if CONFIG_MODVERSIONS==1
#define MODVERSIONS
#include <linux/modversions.h>
#endif        

#include <sys/syscall.h>  /* The list of system calls */

/* For the current (process) structure, we need
 * this to know who the current user is. */
#include <linux/sched.h>
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/* In 2.2.3 /usr/include/linux/version.h includes a 
 * macro for this, but 2.0.35 doesn't − so I add it 
 * here if necessary. */
#ifndef KERNEL_VERSION
#define KERNEL_VERSION(a,b,c) ((a)*65536+(b)*256+(c))
#endif

#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,2,0)
#include <asm/uaccess.h>
#endif

/* The system call table (a table of functions). We 
 * just define this as external, and the kernel will 
 * fill it up for us when we are insmod'ed 
 */
extern void *sys_call_table[];

/* UID we want to spy on − will be filled from the 
 * command line */
int uid;  

#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,2,0)
MODULE_PARM(uid, "i");
#endif

/* A pointer to the original system call. The reason 
 * we keep this, rather than call the original function 
 * (sys_open), is because somebody else might have 
 * replaced the system call before us. Note that this 
 * is not 100% safe, because if another module 
 * replaced sys_open before us, then when we're inserted 
 * we'll call the function in that module − and it 
 * might be removed before we are.
 *
 * Another reason for this is that we can't get sys_open.
 * It's a static variable, so it is not exported. */
asmlinkage int (*original_call)(const char *, int, int);

/* For some reason, in 2.2.3 current−>uid gave me 
 * zero, not the real user ID. I tried to find what went 
 * wrong, but I couldn't do it in a short time, and 
 * I'm lazy − so I'll just use the system call to get the 
 * uid, the way a process would. 
 *
 * For some reason, after I recompiled the kernel this 
 * problem went away. 
 */
asmlinkage int (*getuid_call)();

/* The function we'll replace sys_open (the function 
 * called when you call the open system call) with. To 
 * find the exact prototype, with the number and type 
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 * of arguments, we find the original function first 
 * (it's at fs/open.c). 
 *
 * In theory, this means that we're tied to the 
 * current version of the kernel. In practice, the 
 * system calls almost never change (it would wreck havoc 
 * and require programs to be recompiled, since the system
 * calls are the interface between the kernel and the 
 * processes).
 */
asmlinkage int our_sys_open(const char *filename, 
                            int flags, 
                            int mode)
{
  int i = 0;
  char ch;

  /* Check if this is the user we're spying on */
  if (uid == getuid_call()) {  
   /* getuid_call is the getuid system call, 
    * which gives the uid of the user who
    * ran the process which called the system
    * call we got */

    /* Report the file, if relevant */
    printk("Opened file by %d: ", uid); 
    do {
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,2,0)
      get_user(ch, filename+i);
#else
      ch = get_user(filename+i);
#endif
      i++;
      printk("%c", ch);
    } while (ch != 0);
    printk("\n");
  }

  /* Call the original sys_open − otherwise, we lose 
   * the ability to open files */
  return original_call(filename, flags, mode);
}

/* Initialize the module − replace the system call */
int init_module()
{
  /* Warning − too late for it now, but maybe for 
   * next time... */
  printk("I'm dangerous. I hope you did a ");
  printk("sync before you insmod'ed me.\n");
  printk("My counterpart, cleanup_module(), is even"); 
  printk("more dangerous. If\n");
  printk("you value your file system, it will ");
  printk("be \"sync; rmmod\" \n");
  printk("when you remove this module.\n");

  /* Keep a pointer to the original function in 
   * original_call, and then replace the system call 
   * in the system call table with our_sys_open */
  original_call = sys_call_table[__NR_open];
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  sys_call_table[__NR_open] = our_sys_open;

  /* To get the address of the function for system 
   * call foo, go to sys_call_table[__NR_foo]. */

  printk("Spying on UID:%d\n", uid);

  /* Get the system call for getuid */
  getuid_call = sys_call_table[__NR_getuid];

  return 0;
}

/* Cleanup − unregister the appropriate file from /proc */
void cleanup_module()
{
  /* Return the system call back to normal */
  if (sys_call_table[__NR_open] != our_sys_open) {
    printk("Somebody else also played with the ");
    printk("open system call\n");
    printk("The system may be left in ");
    printk("an unstable state.\n");
  }

  sys_call_table[__NR_open] = original_call;
}  
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Chapter 9. Blocking Processes

9.1. Blocking Processes

9.1.1. Replacing printk

What do you do when somebody asks you for something you can't do right away? If you're a human being and
you're bothered by a human being, the only thing you can say is: "Not right now, I'm busy. Go away!". But if
you're a kernel module and you're bothered by a process, you have another possibility. You can put the
process to sleep until you can service it. After all, processes are being put to sleep by the kernel and woken up
all the time (that's the way multiple processes appear to run on the same time on a single CPU).

This kernel module is an example of this. The file (called /proc/sleep) can only be opened by a single
process at a time. If the file is already open, the kernel module calls
module_interruptible_sleep_on[11]. This function changes the status of the task (a task is the
kernel data structure which holds information about a process and the system call it's in, if any) to
TASK_INTERRUPTIBLE, which means that the task will not run until it is woken up somehow, and adds it
to WaitQ, the queue of tasks waiting to access the file. Then, the function calls the scheduler to context switch
to a different process, one which has some use for the CPU.

When a process is done with the file, it closes it, and module_close is called. That function wakes up all
the processes in the queue (there's no mechanism to only wake up one of them). It then returns and the process
which just closed the file can continue to run. In time, the scheduler decides that that process has had enough
and gives control of the CPU to another process. Eventually, one of the processes which was in the queue will
be given control of the CPU by the scheduler. It starts at the point right after the call to
module_interruptible_sleep_on[12]. It can then proceed to set a global variable to tell all the other
processes that the file is still open and go on with its life. When the other processes get a piece of the CPU,
they'll see that global variable and go back to sleep.

To make our life more interesting, module_close doesn't have a monopoly on waking up the processes
which wait to access the file. A signal, such as Ctrl+c (SIGINT) can also wake up a process. [13] In that
case, we want to return with −EINTR immediately. This is important so users can, for example, kill the
process before it receives the file.

There is one more point to remember. Some times processes don't want to sleep, they want either to get what
they want immediately, or to be told it cannot be done. Such processes use the O_NONBLOCK flag when
opening the file. The kernel is supposed to respond by returning with the error code −EAGAIN from
operations which would otherwise block, such as opening the file in this example. The program cat_noblock,
available in the source directory for this chapter, can be used to open a file with O_NONBLOCK.

Example 9−1. sleep.c

/*  sleep.c − create a /proc file, and if several processes try to open it at
 *  the same time, put all but one to sleep
 */

#include <linux/kernel.h>                   /* We're doing kernel work */
#include <linux/module.h>                   /* Specifically, a module */
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/* Deal with CONFIG_MODVERSIONS */
#if CONFIG_MODVERSIONS==1
#define MODVERSIONS
#include <linux/modversions.h>
#endif        

/* Necessary because we use proc fs */
#include <linux/proc_fs.h>

/* For putting processes to sleep and waking them up */
#include <linux/sched.h>
#include <linux/wrapper.h>

/* In 2.2.3 /usr/include/linux/version.h includes a macro for this, but 2.0.35
 * doesn't − so I add it here if necessary.
 */
#ifndef KERNEL_VERSION
#define KERNEL_VERSION(a,b,c) ((a)*65536+(b)*256+(c))
#endif

#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,2,0)
#include <asm/uaccess.h>                    /* for get_user and put_user */
#endif

/* The module's file functions */

/* Here we keep the last message received, to prove that we can process our
 * input
 */
#define MESSAGE_LENGTH 80
static char Message[MESSAGE_LENGTH];

/* Since we use the file operations struct, we can't use the special proc
 * output provisions − we have to use a standard read function, which is this
 * function
 */
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,2,0)
static ssize_t module_output (
   struct file *file,                      /* The file read */
   char *buf,           /* The buffer to put data to (in the user segment) */
   size_t len,                             /* The length of the buffer */
   loff_t *offset)                         /* Offset in the file − ignore */
#else
static int module_output (
   struct inode *inode,                    /* The inode read */
   struct file *file,                      /* The file read */
   char *buf,           /* The buffer to put data to (in the user segment) */
   int len)                                /* The length of the buffer */
#endif
{
   static int finished = 0;
   int i;
   char message[MESSAGE_LENGTH+30];

   /* Return 0 to signify end of file − that we have nothing more to say at this
    * point.
    */
   if (finished) {
      finished = 0;
      return 0;
   }
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   /* If you don't understand this by now, you're hopeless as a kernel
    * programmer.
    */
   sprintf(message, "Last input:%s\n", Message);
   for (i = 0; i < len && message[i]; i++) 
      put_user(message[i], buf+i);

   finished = 1;
   return i;                            /* Return the number of bytes "read" */
}

/* This function receives input from the user when the user writes to the /proc
 * file.
 */
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,2,0)
static ssize_t module_input (
   struct file *file,                     /* The file itself */
   const char *buf,                       /* The buffer with input */
   size_t length,                         /* The buffer's length */
   loff_t *offset)                        /* offset to file − ignore */
#else
static int module_input (
   struct inode *inode,                   /* The file's inode */
   struct file *file,                     /* The file itself */
   const char *buf,                       /* The buffer with the input */
   int length)                            /* The buffer's length */
#endif
{
   int i;

   /* Put the input into Message, where module_output will later be able to use
    * it
    */
   for(i = 0; i < MESSAGE_LENGTH−1 && i < length; i++)
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,2,0)
      get_user(Message[i], buf+i);
#else
      Message[i] = get_user(buf+i);
#endif
   /* we want a standard, zero terminated string */
   Message[i] = '\0';  

   /* We need to return the number of input characters used */
   return i;
}

/* 1 if the file is currently open by somebody */
int Already_Open = 0;

/* Queue of processes who want our file */
static struct wait_queue *WaitQ = NULL;

/* Called when the /proc file is opened */
static int module_open(struct inode *inode, struct file *file)
{
   /* If the file's flags include O_NONBLOCK, it means the process doesn't want
    * to wait for the file.  In this case, if the file is already open, we
    * should fail with −EAGAIN, meaning "you'll have to try again", instead of
    * blocking a process which would rather stay awake.
    */
   if ((file−>f_flags & O_NONBLOCK) && Already_Open) 
      return −EAGAIN;

The Linux Kernel Module Programming Guide

Chapter 9. Blocking Processes 53



         /* This is the correct place for MOD_INC_USE_COUNT because if a process is
    * in the loop, which is within the kernel module, the kernel module must
    * not be removed.
    */
   MOD_INC_USE_COUNT;

   /* If the file is already open, wait until it isn't */
   while (Already_Open) 
   {
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,2,0)
      int i, is_sig = 0;
#endif

      /* This function puts the current process, including any system calls,
       * such as us, to sleep.  Execution will be resumed right after the
       * function call, either because somebody called wake_up(&WaitQ) (only
       * module_close does that, when the file is closed) or when a signal,
       * such as Ctrl−C, is sent to the process
       */
      module_interruptible_sleep_on(&WaitQ);

      /* If we woke up because we got a signal we're not blocking, return
       * −EINTR (fail the system call).  This allows processes to be killed or
       * stopped.
       */

/*
 * Emmanuel Papirakis:
 *
 * This is a little update to work with 2.2.*.  Signals now are contained in
 * two words (64 bits) and are stored in a structure that contains an array of
 * two unsigned longs.  We now have to make 2 checks in our if.
 *
 * Ori Pomerantz:
 *
 * Nobody promised me they'll never use more than 64 bits, or that this book
 * won't be used for a version of Linux with a word size of 16 bits.  This code
 * would work in any case.
 */       
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,2,0)
      for (i = 0; i < _NSIG_WORDS && !is_sig; i++)
         is_sig = current−>signal.sig[i] & ~current−>blocked.sig[i];

      if (is_sig) {
#else
      if (current−>signal & ~current−>blocked) {
#endif
         /* It's important to put MOD_DEC_USE_COUNT here, because for processes
          * where the open is interrupted there will never be a corresponding
          * close. If we don't decrement the usage count here, we will be left
          * with a positive usage count which we'll have no way to bring down
          * to zero, giving us an immortal module, which can only be killed by
          * rebooting the machine.
          */
         MOD_DEC_USE_COUNT;
         return −EINTR;
      }
   }

   /* If we got here, Already_Open must be zero */
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   /* Open the file */
   Already_Open = 1;
   return 0;                                 /* Allow the access */
}

/* Called when the /proc file is closed */
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,2,0)
int module_close(struct inode *inode, struct file *file)
#else
void module_close(struct inode *inode, struct file *file)
#endif
{
   /* Set Already_Open to zero, so one of the processes in the WaitQ will be
    * able to set Already_Open back to one and to open the file.  All the other
    * processes will be called when Already_Open is back to one, so they'll go
    * back to sleep.
    */
   Already_Open = 0;

   /* Wake up all the processes in WaitQ, so if anybody is waiting for the
    * file, they can have it.
    */
   module_wake_up(&WaitQ);

   MOD_DEC_USE_COUNT;

#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,2,0)
   return 0;                                 /* success */
#endif
}

/* This function decides whether to allow an operation (return zero) or not
 * allow it (return a non−zero which indicates why it is not allowed).
 *
 * The operation can be one of the following values:
 * 0 − Execute (run the "file" − meaningless in our case)
 * 2 − Write (input to the kernel module)
 * 4 − Read (output from the kernel module)
 *
 * This is the real function that checks file permissions. The permissions
 * returned by ls −l are for referece only, and can be overridden here. 
 */
static int module_permission(struct inode *inode, int op)
{
   /* We allow everybody to read from our module, but only root (uid 0) may
    * write to it
    */ 
   if (op == 4 || (op == 2 && current−>euid == 0))
      return 0; 

   /* If it's anything else, access is denied */
   return −EACCES;
}

/* Structures to register as the /proc file, with pointers to all the relevant
 * functions. 
 */

/* File operations for our proc file. This is where we place pointers to all
 * the functions called when somebody tries to do something to our file. NULL
 * means we don't want to deal with something.
 */
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static struct file_operations File_Ops_4_Our_Proc_File = {
   NULL,                                   /* lseek */
   module_output,                          /* "read" from the file */
   module_input,                           /* "write" to the file */
   NULL,                                   /* readdir */
   NULL,                                   /* select */
   NULL,                                   /* ioctl */
   NULL,                                   /* mmap */
   module_open,                    /* called when the /proc file is opened */
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,2,0)
   NULL,                                   /* flush */
#endif
   module_close};                          /* called when it's classed */

/* Inode operations for our proc file.  We need it so we'll have somewhere to
 * specify the file operations structure we want to use, and the function we
 * use for permissions. It's also possible to specify functions to be called
 * for anything else which could be done to an inode (although we don't bother,
 * we just put NULL).
 */
static struct inode_operations Inode_Ops_4_Our_Proc_File = {
   &File_Ops_4_Our_Proc_File,
   NULL,                                   /* create */
   NULL,                                   /* lookup */
   NULL,                                   /* link */
   NULL,                                   /* unlink */
   NULL,                                   /* symlink */
   NULL,                                   /* mkdir */
   NULL,                                   /* rmdir */
   NULL,                                   /* mknod */
   NULL,                                   /* rename */
   NULL,                                   /* readlink */
   NULL,                                   /* follow_link */
   NULL,                                   /* readpage */
   NULL,                                   /* writepage */
   NULL,                                   /* bmap */
   NULL,                                   /* truncate */
   module_permission};                     /* check for permissions */

/* Directory entry */
static struct proc_dir_entry Our_Proc_File = {
         0,                 /* Inode number − ignore, it will be filled by 
                       * proc_register[_dynamic]
                       */
   5,                                      /* Length of the file name */
   "sleep",                                /* The file name */

   /* File mode − this is a regular file which can be read by its owner, its
    * group, and everybody else. Also, its owner can write to it.
    *
    * Actually, this field is just for reference, it's module_permission that
    * does the actual check. It could use this field, but in our
    * implementation it doesn't, for simplicity.
    */
   S_IFREG | S_IRUGO | S_IWUSR, 
   1,        /* Number of links (directories where the file is referenced) */
   0, 0,     /* The uid and gid for the file − we give it to root */
   80,       /* The size of the file reported by ls. */

   /* A pointer to the inode structure for the file, if we need it. In our
    * case we do, because we need a write function.
    */
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   &Inode_Ops_4_Our_Proc_File, 

   /* The read function for the file.  Irrelevant, because we put it in the
    * inode structure above
    */
   NULL}; 

/* Module initialization and cleanup */

/* Initialize the module − register the proc file */
int init_module()
{
   /* Success if proc_register_dynamic is a success, failure otherwise */
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,2,0)
   return proc_register(&proc_root, &Our_Proc_File);
#else
   return proc_register_dynamic(&proc_root, &Our_Proc_File);
#endif 

   /* proc_root is the root directory for the proc fs (/proc).  This is where
    * we want our file to be located. 
    */
}

/* Cleanup − unregister our file from /proc.  This could get dangerous if
 * there are still processes waiting in WaitQ, because they are inside our
 * open function, which will get unloaded. I'll explain how to avoid removal
 * of a kernel module in such a case in chapter 10.
 */
void cleanup_module()
{
   proc_unregister(&proc_root, Our_Proc_File.low_ino);
}  
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Chapter 10. Replacing Printks

10.1. Replacing printk

In Section 1.2.1.2, I said that X and kernel module programming don't mix. That's true for developing kernel
modules, but in actual use, you want to be able to send messages to whichever tty[14] the command to load
the module came from.

The way this is done is by using current, a pointer to the currently running task, to get the current task's tty
structure. Then, we look inside that tty structure to find a pointer to a string write function, which we use to
write a string to the tty.

Example 10−1. print_string.c

/*  print_string.c − Send output to the tty you're running on, regardless of whether it's
 *     through X11, telnet, etc.  We do this by printing the string to the tty associated
 *     with the current task.
 */
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/sched.h>    // For current
#include <linux/tty.h>      // For the tty declarations
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Peter Jay Salzman");

void print_string(char *str)
{
   struct tty_struct *my_tty;
   my_tty = current−>tty;           // The tty for the current task

   /* If my_tty is NULL, the current task has no tty you can print to (this is possible,
    * for example, if it's a daemon).  If so, there's nothing we can do.
    */
   if (my_tty != NULL) { 

      /* my_tty−>driver is a struct which holds the tty's functions, one of which (write)
       * is used to write strings to the tty.  It can be used to take a string either
       * from the user's memory segment or the kernel's memory segment.
       *
       * The function's 1st parameter is the tty to write to, because the same function
       * would normally be used for all tty's of a certain type.  The 2nd parameter
       * controls whether the function receives a string from kernel memory (false, 0) or
       * from user memory (true, non zero).  The 3rd parameter is a pointer to a string.
       * The 4th parameter is the length of the string.
       */
      (*(my_tty−>driver).write)(
         my_tty,                 // The tty itself
         0,                      // We don't take the string from user space
         str,                    // String
         strlen(str));           // Length

      /* ttys were originally hardware devices, which (usually) strictly followed the
       * ASCII standard.  In ASCII, to move to a new line you need two characters, a
       * carriage return and a line feed.  On Unix, the ASCII line feed is used for both
       * purposes − so we can't just use \n, because it wouldn't have a carriage return
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       * and the next line will start at the column right after the line feed. 
       *
       * BTW, this is why text files are different between Unix and MS Windows.  In CP/M
       * and its derivatives, like MS−DOS and MS Windows, the ASCII standard was strictly
       * adhered to, and therefore a newline requirs both a LF and a CR.
       */
      (*(my_tty−>driver).write)(my_tty, 0, "\015\012", 2);
   }
}

int print_string_init(void)
{
   print_string("The module has been inserted.  Hello world!");
   return 0;
}

void print_string_exit(void)
{
   print_string("The module has been removed.  Farewell world!");
}  

module_init(print_string_init);
module_exit(print_string_exit);
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Chapter 11. Scheduling Tasks

11.1. Scheduling Tasks

Very often, we have "housekeeping" tasks which have to be done at a certain time, or every so often. If the
task is to be done by a process, we do it by putting it in the crontab file. If the task is to be done by a kernel
module, we have two possibilities. The first is to put a process in the crontab file which will wake up the
module by a system call when necessary, for example by opening a file. This is terribly inefficient, however
−− we run a new process off of crontab, read a new executable to memory, and all this just to wake up a
kernel module which is in memory anyway.

Instead of doing that, we can create a function that will be called once for every timer interrupt. The way we
do this is we create a task, held in a tq_struct structure, which will hold a pointer to the function. Then, we use
queue_task to put that task on a task list called tq_timer, which is the list of tasks to be executed on the
next timer interrupt. Because we want the function to keep on being executed, we need to put it back on
tq_timer whenever it is called, for the next timer interrupt.

There's one more point we need to remember here. When a module is removed by rmmod, first its reference
count is checked. If it is zero, module_cleanup is called. Then, the module is removed from memory with
all its functions. Nobody checks to see if the timer's task list happens to contain a pointer to one of those
functions, which will no longer be available. Ages later (from the computer's perspective, from a human
perspective it's nothing, less than a hundredth of a second), the kernel has a timer interrupt and tries to call the
function on the task list. Unfortunately, the function is no longer there. In most cases, the memory page where
it sat is unused, and you get an ugly error message. But if some other code is now sitting at the same memory
location, things could get very ugly. Unfortunately, we don't have an easy way to unregister a task from a task
list.

Since cleanup_module can't return with an error code (it's a void function), the solution is to not let it
return at all. Instead, it calls sleep_on or module_sleep_on[15] to put the rmmod process to sleep.
Before that, it informs the function called on the timer interrupt to stop attaching itself by setting a global
variable. Then, on the next timer interrupt, the rmmod process will be woken up, when our function is no
longer in the queue and it's safe to remove the module.

Example 11−1. sched.c

/*  sched.c − scheduale a function to be called on every timer interrupt.
 *
 *  Copyright (C) 2001 by Peter Jay Salzman
 */

/* The necessary header files */

/* Standard in kernel modules */
#include <linux/kernel.h>                   /* We're doing kernel work */
#include <linux/module.h>                   /* Specifically, a module */

/* Deal with CONFIG_MODVERSIONS */
#if CONFIG_MODVERSIONS==1
#define MODVERSIONS
#include <linux/modversions.h>
#endif        
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/* Necessary because we use the proc fs */
#include <linux/proc_fs.h>

/* We scheduale tasks here */
#include <linux/tqueue.h>

/* We also need the ability to put ourselves to sleep and wake up later */
#include <linux/sched.h>

/* In 2.2.3 /usr/include/linux/version.h includes a macro for this, but
 * 2.0.35 doesn't − so I add it here if necessary.
 */
#ifndef KERNEL_VERSION
#define KERNEL_VERSION(a,b,c) ((a)*65536+(b)*256+(c))
#endif

/* The number of times the timer interrupt has been called so far */
static int TimerIntrpt = 0;

/* This is used by cleanup, to prevent the module from being unloaded while
 * intrpt_routine is still in the task queue
 */
static struct wait_queue *WaitQ = NULL;

static void intrpt_routine(void *);

/* The task queue structure for this task, from tqueue.h */
static struct tq_struct Task = {
   NULL,          /* Next item in list − queue_task will do this for us */
   0,             /* A flag meaning we haven't been inserted into a task
                   * queue yet 
                   */
   intrpt_routine, /* The function to run */
   NULL            /* The void* parameter for that function */
};

/* This function will be called on every timer interrupt. Notice the void*
 * pointer − task functions can be used for more than one purpose, each time 
 * getting a different parameter.
 */
static void intrpt_routine(void *irrelevant)
{
   /* Increment the counter */
   TimerIntrpt++;

   /* If cleanup wants us to die */
   if (WaitQ != NULL) 
      wake_up(&WaitQ);               /* Now cleanup_module can return */
   else
      /* Put ourselves back in the task queue */
      queue_task(&Task, &tq_timer);  
}

/* Put data into the proc fs file. */
int procfile_read(char *buffer, 
                  char **buffer_location, off_t offset, 
                  int buffer_length, int zero)
{
   int len;  /* The number of bytes actually used */

   /* It's static so it will still be in memory when we leave this function
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    */
   static char my_buffer[80];  

   static int count = 1;

   /* We give all of our information in one go, so if the anybody asks us
    * if we have more information the answer should always be no. 
    */
   if (offset > 0)
      return 0;

   /* Fill the buffer and get its length */
   len = sprintf(my_buffer, "Timer called %d times so far\n", TimerIntrpt);
   count++;

   /* Tell the function which called us where the buffer is */
   *buffer_location = my_buffer;

   /* Return the length */
   return len;
}

struct proc_dir_entry Our_Proc_File = {
   0,  /* Inode number − ignore, it'll be filled by proc_register_dynamic */
   5,                 /* Length of the file name */
   "sched",           /* The file name */
   S_IFREG | S_IRUGO, /* File mode − this is a regular file which can be
                       * read by its owner, its group, and everybody else
                       */
   1,      /* Number of links (directories where the file is referenced) */
   0, 0,             /* The uid and gid for the file − we give it to root */
   80,               /* The size of the file reported by ls. */
   NULL, /* functions which can be done on the inode (linking, removing,
          * etc). − we don't * support any.
          */
   procfile_read,  /* The read function for this file, the function called
                                                                          * when somebody tries to read something from it.
                    */
   NULL /* We could have here a function to fill the file's inode, to
         * enable us to play with permissions, ownership, etc.
         */
  }; 

/* Initialize the module − register the proc file */
int init_module()
{
   /* Put the task in the tq_timer task queue, so it will be executed at
    * next timer interrupt
    */
   queue_task(&Task, &tq_timer);

   /* Success if proc_register_dynamic is a success, failure otherwise */
#if LINUX_VERSION_CODE > KERNEL_VERSION(2,2,0)
   return proc_register(&proc_root, &Our_Proc_File);
#else
   return proc_register_dynamic(&proc_root, &Our_Proc_File);
#endif
}

/* Cleanup */
void cleanup_module()
{
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   /* Unregister our /proc file */
   proc_unregister(&proc_root, Our_Proc_File.low_ino);

   /* Sleep until intrpt_routine is called one last time. This is necessary,
    * because otherwise we'll deallocate the memory holding intrpt_routine
    * and Task while tq_timer still references them.  Notice that here we
    * don't allow signals to interrupt us. 
    *
    * Since WaitQ is now not NULL, this automatically tells the interrupt
    * routine it's time to die.
    */
   sleep_on(&WaitQ);
}  
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Chapter 12. Interrupt Handlers

12.1. Interrupt Handlers

12.1.1. Interrupt Handlers

Except for the last chapter, everything we did in the kernel so far we've done as a response to a process asking
for it, either by dealing with a special file, sending an ioctl(), or issuing a system call. But the job of the
kernel isn't just to respond to process requests. Another job, which is every bit as important, is to speak to the
hardware connected to the machine.

There are two types of interaction between the CPU and the rest of the computer's hardware. The first type is
when the CPU gives orders to the hardware, the other is when the hardware needs to tell the CPU something.
The second, called interrupts, is much harder to implement because it has to be dealt with when convenient for
the hardware, not the CPU. Hardware devices typically have a very small amount of RAM, and if you don't
read their information when available, it is lost.

Under Linux, hardware interrupts are called IRQ's (Interrupt Requests)[16]. There are two types of IRQ's,
short and long. A short IRQ is one which is expected to take a very short period of time, during which the rest
of the machine will be blocked and no other interrupts will be handled. A long IRQ is one which can take
longer, and during which other interrupts may occur (but not interrupts from the same device). If at all
possible, it's better to declare an interrupt handler to be long.

When the CPU receives an interrupt, it stops whatever it's doing (unless it's processing a more important
interrupt, in which case it will deal with this one only when the more important one is done), saves certain
parameters on the stack and calls the interrupt handler. This means that certain things are not allowed in the
interrupt handler itself, because the system is in an unknown state. The solution to this problem is for the
interrupt handler to do what needs to be done immediately, usually read something from the hardware or send
something to the hardware, and then schedule the handling of the new information at a later time (this is called
the "bottom half") and return. The kernel is then guaranteed to call the bottom half as soon as possible −− and
when it does, everything allowed in kernel modules will be allowed.

The way to implement this is to call request_irq() to get your interrupt handler called when the relevant
IRQ is received (there are 15 of them, plus 1 which is used to cascade the interrupt controllers, on Intel
platforms). This function receives the IRQ number, the name of the function, flags, a name for
/proc/interrupts and a parameter to pass to the interrupt handler. The flags can include SA_SHIRQ to
indicate you're willing to share the IRQ with other interrupt handlers (usually because a number of hardware
devices sit on the same IRQ) and SA_INTERRUPT to indicate this is a fast interrupt. This function will only
succeed if there isn't already a handler on this IRQ, or if you're both willing to share.

Then, from within the interrupt handler, we communicate with the hardware and then use
queue_task_irq() with tq_immediate() and mark_bh(BH_IMMEDIATE) to schedule the bottom
half. The reason we can't use the standard queue_task in version 2.0 is that the interrupt might happen
right in the middle of somebody else's queue_task[17]. We need mark_bh because earlier versions of
Linux only had an array of 32 bottom halves, and now one of them (BH_IMMEDIATE) is used for the linked
list of bottom halves for drivers which didn't get a bottom half entry assigned to them.
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12.1.2. Keyboards on the Intel Architecture

The rest of this chapter is completely Intel specific. If you're not running on an Intel platform, it will not work.
Don't even try to compile the code here.

I had a problem with writing the sample code for this chapter. On one hand, for an example to be useful it has
to run on everybody's computer with meaningful results. On the other hand, the kernel already includes device
drivers for all of the common devices, and those device drivers won't coexist with what I'm going to write.
The solution I've found was to write something for the keyboard interrupt, and disable the regular keyboard
interrupt handler first. Since it is defined as a static symbol in the kernel source files (specifically,
drivers/char/keyboard.c), there is no way to restore it. Before insmod'ing this code, do on another
terminal sleep 120 ; reboot if you value your file system.

This code binds itself to IRQ 1, which is the IRQ of the keyboard controlled under Intel architectures. Then,
when it receives a keyboard interrupt, it reads the keyboard's status (that's the purpose of the inb(0x64))
and the scan code, which is the value returned by the keyboard. Then, as soon as the kernel thinks it's feasible,
it runs got_char which gives the code of the key used (the first seven bits of the scan code) and whether it
has been pressed (if the 8th bit is zero) or released (if it's one).

Example 12−1. intrpt.c

/*  intrpt.c − An interrupt handler.
 *
 *  Copyright (C) 2001 by Peter Jay Salzman
 */

/* The necessary header files */

/* Standard in kernel modules */
#include <linux/kernel.h>               /* We're doing kernel work */
#include <linux/module.h>               /* Specifically, a module */

/* Deal with CONFIG_MODVERSIONS */
#if CONFIG_MODVERSIONS==1
#define MODVERSIONS
#include <linux/modversions.h>
#endif        

#include <linux/sched.h>
#include <linux/tqueue.h>

/* We want an interrupt */
#include <linux/interrupt.h>

#include <asm/io.h>

/* In 2.2.3 /usr/include/linux/version.h includes a macro for this, but
 * 2.0.35 doesn't − so I add it here if necessary.
 */
#ifndef KERNEL_VERSION
#define KERNEL_VERSION(a,b,c) ((a)*65536+(b)*256+(c))
#endif

/* Bottom Half − this will get called by the kernel as soon as it's safe
 * to do everything normally allowed by kernel modules.
 */
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static void got_char(void *scancode)
{
   printk("Scan Code %x %s.\n",
          (int) *((char *) scancode) & 0x7F,
          *((char *) scancode) & 0x80 ? "Released" : "Pressed");
}

/* This function services keyboard interrupts. It reads the relevant
 * information from the keyboard and then scheduales the bottom half
 * to run when the kernel considers it safe.
 */
void irq_handler(int irq, void *dev_id, struct pt_regs *regs)
{
   /* This variables are static because they need to be 
    * accessible (through pointers) to the bottom half routine.
    */
   static unsigned char scancode;
   static struct tq_struct task = {NULL, 0, got_char, &scancode};
   unsigned char status;

   /* Read keyboard status */
   status = inb(0x64);
   scancode = inb(0x60);

   /* Scheduale bottom half to run */
#if LINUX_VERSION_CODE > KERNEL_VERSION(2,2,0)
   queue_task(&task, &tq_immediate);
#else
   queue_task_irq(&task, &tq_immediate);
#endif
   mark_bh(IMMEDIATE_BH);
}

/* Initialize the module − register the IRQ handler */
int init_module()
{
   /* Since the keyboard handler won't co−exist with another handler,
    * such as us, we have to disable it (free its IRQ) before we do
    * anything.  Since we don't know where it is, there's no way to
                * reinstate it later − so the computer will have to be rebooted
                * when we're done.
    */
   free_irq(1, NULL);

   /* Request IRQ 1, the keyboard IRQ, to go to our irq_handler.
          * SA_SHIRQ means we're willing to have othe handlers on this IRQ.
                * SA_INTERRUPT can be used to make the handler into a fast interrupt. 
    */
   return request_irq(1,   /* The number of the keyboard IRQ on PCs */ 
              irq_handler, /* our handler */
              SA_SHIRQ, 
              "test_keyboard_irq_handler", NULL);
}

/* Cleanup */
void cleanup_module()
{
   /* This is only here for completeness. It's totally irrelevant, since
          * we don't have a way to restore the normal keyboard interrupt so the
                * computer is completely useless and has to be rebooted.
    */
   free_irq(1, NULL);
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}  
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Chapter 13. Symmetric Multi Processing

13.1. Symmetrical Multi−Processing

One of the easiest and cheapest ways to improve hardware performance is to put more than one CPU on the
board. This can be done either making the different CPU's take on different jobs (asymmetrical
multi−processing) or by making them all run in parallel, doing the same job (symmetrical multi−processing,
a.k.a. SMP). Doing asymmetrical multi−processing effectively requires specialized knowledge about the tasks
the computer should do, which is unavailable in a general purpose operating system such as Linux. On the
other hand, symmetrical multi−processing is relatively easy to implement.

By relatively easy, I mean exactly that: not that it's really easy. In a symmetrical multi−processing
environment, the CPU's share the same memory, and as a result code running in one CPU can affect the
memory used by another. You can no longer be certain that a variable you've set to a certain value in the
previous line still has that value; the other CPU might have played with it while you weren't looking.
Obviously, it's impossible to program like this.

In the case of process programming this normally isn't an issue, because a process will normally only run on
one CPU at a time[18]. The kernel, on the other hand, could be called by different processes running on
different CPU's.

In version 2.0.x, this isn't a problem because the entire kernel is in one big spinlock. This means that if one
CPU is in the kernel and another CPU wants to get in, for example because of a system call, it has to wait
until the first CPU is done. This makes Linux SMP safe[19], but inefficient.

In version 2.2.x, several CPU's can be in the kernel at the same time. This is something module writers need
to be aware of.
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Chapter 14. Common Pitfalls

14.1. Common Pitfalls

Before I send you on your way to go out into the world and write kernel modules, there are a few things I need
to warn you about. If I fail to warn you and something bad happens, please report the problem to me for a full
refund of the amount I was paid for your copy of the book.

Using standard libraries
You can't do that. In a kernel module you can only use kernel functions, which are the functions you
can see in /proc/ksyms.

Disabling interrupts
You might need to do this for a short time and that is OK, but if you don't enable them afterwards,
your system will be stuck and you'll have to power it off.

Sticking your head inside a large carnivore
I probably don't have to warn you about this, but I figured I will anyway, just in case.
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Appendix A. Changes: 2.0 To 2.2

A.1. Changes between 2.0 and 2.2

A.1.1. Changes between 2.0 and 2.2

I don't know the entire kernel well enough do document all of the changes. In the course of converting the
examples (or actually, adapting Emmanuel Papirakis's changes) I came across the following differences. I
listed all of them here together to help module programmers, especially those who learned from previous
versions of this book and are most familiar with the techniques I use, convert to the new version.

An additional resource for people who wish to convert to 2.2 is located on Richard Gooch's site .

asm/uaccess.h
If you need put_user or get_user you have to #include it.

get_user
In version 2.2, get_user receives both the pointer into user memory and the variable in kernel
memory to fill with the information. The reason for this is that get_user can now read two or four
bytes at a time if the variable we read is two or four bytes long.

file_operations
This structure now has a flush function between the open and close functions.

close in file_operations
In version 2.2, the close function returns an integer, so it's allowed to fail.

read,write in file_operations
The headers for these functions changed. They now return ssize_t instead of an integer, and their
parameter list is different. The inode is no longer a parameter, and on the other hand the offset into the
file is.

proc_register_dynamic
This function no longer exists. Instead, you call the regular proc_register and put zero in the
inode field of the structure.

Signals
The signals in the task structure are no longer a 32 bit integer, but an array of _NSIG_WORDS
integers.

queue_task_irq
Even if you want to scheduale a task to happen from inside an interrupt handler, you use
queue_task, not queue_task_irq.

Module Parameters
You no longer just declare module parameters as global variables. In 2.2 you have to also use
MODULE_PARM to declare their type. This is a big improvement, because it allows the module to
receive string parameters which start with a digits, for example, without getting confused.

Symmetrical Multi−Processing
The kernel is no longer inside one huge spinlock, which means that kernel modules have to be aware
of SMP.
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Appendix B. Where To Go From Here

B.1. Where From Here?

I could easily have squeezed a few more chapters into this book. I could have added a chapter about creating
new file systems, or about adding new protocol stacks (as if there's a need for that −− you'd have to dig
underground to find a protocol stack not supported by Linux). I could have added explanations of the kernel
mechanisms we haven't touched upon, such as bootstrapping or the disk interface.

However, I chose not to. My purpose in writing this book was to provide initiation into the mysteries of kernel
module programming and to teach the common techniques for that purpose. For people seriously interested in
kernel programming, I recommend Juan−Mariano de Goyeneche's list of kernel resources . Also, as Linus
said, the best way to learn the kernel is to read the source code yourself.

If you're interested in more examples of short kernel modules, I recommend Phrack magazine. Even if you're
not interested in security, and as a programmer you should be, the kernel modules there are good examples of
what you can do inside the kernel, and they're short enough not to require too much effort to understand.

I hope I have helped you in your quest to become a better programmer, or at least to have fun through
technology. And, if you do write useful kernel modules, I hope you publish them under the GPL, so I can use
them too.
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